BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 25803502)

  • 1. Complete surface coverage of ZnO nanorod arrays by pulsed electrodeposited CuInS2 for visible light energy conversion.
    Tang Y; Yun JH; Wang L; Amal R; Ng YH
    Dalton Trans; 2015 Apr; 44(16):7127-30. PubMed ID: 25803502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile synthesis of ZnO/CuInS2 nanorod arrays for photocatalytic pollutants degradation.
    Yang Y; Que W; Zhang X; Xing Y; Yin X; Du Y
    J Hazard Mater; 2016 Nov; 317():430-439. PubMed ID: 27322900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of ZnO/ZnS/CdS/CuInS₂ core-shell nanowire arrays via ion exchange: p-n junction photoanode with enhanced photoelectrochemical activity under visible light.
    Yu YX; Ouyang WX; Liao ZT; Du BB; Zhang WD
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8467-74. PubMed ID: 24758144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoelectrochemical Properties of Vertically Aligned CuInS2 Nanorod Arrays Prepared via Template-Assisted Growth and Transfer.
    Yang W; Oh Y; Kim J; Kim H; Shin H; Moon J
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):425-31. PubMed ID: 26645722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-efficiency photoelectrochemical properties by a highly crystalline CdS-sensitized ZnO nanorod array.
    Bu Y; Chen Z; Li W; Yu J
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5097-104. PubMed ID: 23688263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photovoltaic activity of ZnO nanorods arrays co-sensitized by CdS and CuInS2 quantum dots.
    Shen F; Que W; Zhang J; Qiu X; Yin X; Liao Y
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1168-72. PubMed ID: 23646595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visible-light-responsive TiO2-coated ZnO:I nanorod array films with enhanced photoelectrochemical and photocatalytic performance.
    Wang Y; Zheng YZ; Lu S; Tao X; Che Y; Chen JF
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6093-101. PubMed ID: 25742121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Density-controlled electrodeposition growth of zinc oxide nanorod arrays.
    Qiu J; Guo M; Zhang M; Wang X
    J Nanosci Nanotechnol; 2011 Jun; 11(6):4957-67. PubMed ID: 21770128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure.
    Wang M; Ren F; Zhou J; Cai G; Cai L; Hu Y; Wang D; Liu Y; Guo L; Shen S
    Sci Rep; 2015 Aug; 5():12925. PubMed ID: 26262752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The preparation and characterization of 1-D orderly ZnO nanorod arrarys].
    Liu R; Zhang T; Zhao SL; Xu Z; Zhang FJ; Yuan GC; Xu XR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2249-53. PubMed ID: 19123382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved current density with Al2O3 coated ZnO nanorod in hybrid solar cell.
    Lin SC; Chen SY; Peng CH
    J Nanosci Nanotechnol; 2010 Jul; 10(7):4602-6. PubMed ID: 21128464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Templated electrodeposition and photocatalytic activity of cuprous oxide nanorod arrays.
    Haynes KM; Perry CM; Rivas M; Golden TD; Bazan A; Quintana M; Nesterov VN; Berhe SA; Rodríguez J; Estrada W; Youngblood WJ
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):830-7. PubMed ID: 25455203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical fabrication of ZnO-CdSe core-shell nanorod arrays for efficient photoelectrochemical water splitting.
    Miao J; Yang HB; Khoo SY; Liu B
    Nanoscale; 2013 Nov; 5(22):11118-24. PubMed ID: 24077389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllable growth and magnetic properties of nickel nanoclusters electrodeposited on the ZnO nanorod template.
    Tang Y; Zhao D; Shen D; Zhang J; Wang X
    Nanotechnology; 2009 Dec; 20(49):495601. PubMed ID: 19893151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of the Solution Flow and Electrical Field on the Homogeneity of Large-Scale Electrodeposited ZnO Nanorods.
    Zhao Y; Li K; Hu Y; Hou X; Lin F; Tang J; Tang X; Xing X; Zhao X; Zhu H; Wang X; Wei Z
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ZnO nanorod/CdS nanocrystal core/shell-type heterostructures for solar cell applications.
    Guerguerian G; Elhordoy F; Pereyra CJ; Marotti RE; Martín F; Leinen D; Ramos-Barrado JR; Dalchiele EA
    Nanotechnology; 2011 Dec; 22(50):505401. PubMed ID: 22108174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlled growth of well-aligned ZnO nanorod array using a novel solution method.
    Tak Y; Yong K
    J Phys Chem B; 2005 Oct; 109(41):19263-9. PubMed ID: 16853488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superstrate CuInS2 photovoltaics with enhanced performance using a CdS/ZnO nanorod array.
    Lee D; Yong K
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6758-65. PubMed ID: 23163478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Photoelectrocatalytic Activity of BiOI Nanoplate-Zinc Oxide Nanorod p-n Heterojunction.
    Kuang PY; Ran JR; Liu ZQ; Wang HJ; Li N; Su YZ; Jin YG; Qiao SZ
    Chemistry; 2015 Oct; 21(43):15360-8. PubMed ID: 26332399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembled, aligned ZnO nanorod buffer layers for high-current-density, inverted organic photovoltaics.
    Rao AD; Karalatti S; Thomas T; Ramamurthy PC
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):16792-9. PubMed ID: 25238197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.