BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25803608)

  • 21. A systematic molecular dynamics approach to the structural characterization of amyloid aggregation propensity of β2-microglobulin mutant D76N.
    Chandrasekaran P; Rajasekaran R
    Mol Biosyst; 2016 Mar; 12(3):850-9. PubMed ID: 26757617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biochemical and biophysical comparison of human and mouse beta-2 microglobulin reveals the molecular determinants of low amyloid propensity.
    Achour A; Broggini L; Han X; Sun R; Santambrogio C; Buratto J; Visentin C; Barbiroli A; De Luca CMG; Sormanni P; Moda F; De Simone A; Sandalova T; Grandori R; Camilloni C; Ricagno S
    FEBS J; 2020 Feb; 287(3):546-560. PubMed ID: 31420997
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insights into the role of the beta-2 microglobulin D-strand in amyloid propensity revealed by mass spectrometry.
    Leney AC; Pashley CL; Scarff CA; Radford SE; Ashcroft AE
    Mol Biosyst; 2014 Mar; 10(3):412-20. PubMed ID: 24336936
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular interactions in the formation and deposition of beta2-microglobulin-related amyloid fibrils.
    Naiki H; Yamamoto S; Hasegawa K; Yamaguchi I; Goto Y; Gejyo F
    Amyloid; 2005 Mar; 12(1):15-25. PubMed ID: 16076607
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of β2-microglobulin conformational intermediates associated to different fibrillation conditions.
    Santambrogio C; Ricagno S; Sobott F; Colombo M; Bolognesi M; Grandori R
    J Mass Spectrom; 2011 Aug; 46(8):734-41. PubMed ID: 21766392
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A regulatable switch mediates self-association in an immunoglobulin fold.
    Calabrese MF; Eakin CM; Wang JM; Miranker AD
    Nat Struct Mol Biol; 2008 Sep; 15(9):965-71. PubMed ID: 19172750
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impaired lysosomal processing of beta2-microglobulin by infiltrating macrophages in dialysis amyloidosis.
    García-García M; Argilés ; Gouin-Charnet A; Durfort M; García-Valero J; Mourad G
    Kidney Int; 1999 Mar; 55(3):899-906. PubMed ID: 10027926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. IR spectroscopic analyses of amyloid fibril formation of β2-microglobulin using a simplified procedure for its in vitro generation at neutral pH.
    Fabian H; Gast K; Laue M; Jetzschmann KJ; Naumann D; Ziegler A; Uchanska-Ziegler B
    Biophys Chem; 2013 Sep; 179():35-46. PubMed ID: 23727989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrastructural localization of advanced glycation end products and beta2-microglobulin in dialysis amyloidosis.
    Brancaccio D; Gallieni M; Niwa T; Braidotti P; Coggi G
    J Nephrol; 2000; 13(2):129-36. PubMed ID: 10858976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reversible heat-induced dissociation of β2-microglobulin amyloid fibrils.
    Kardos J; Micsonai A; Pál-Gábor H; Petrik É; Gráf L; Kovács J; Lee YH; Naiki H; Goto Y
    Biochemistry; 2011 Apr; 50(15):3211-20. PubMed ID: 21388222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of the I
    Smith HI; Guthertz N; Cawood EE; Maya-Martinez R; Breeze AL; Radford SE
    J Biol Chem; 2020 Aug; 295(35):12474-12484. PubMed ID: 32661194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increased β-Sheet Dynamics and D-E Loop Repositioning Are Necessary for Cu(II)-Induced Amyloid Formation by β-2-Microglobulin.
    Borotto NB; Zhang Z; Dong J; Burant B; Vachet RW
    Biochemistry; 2017 Feb; 56(8):1095-1104. PubMed ID: 28168880
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of the C-terminal 28 residues of beta2-microglobulin in amyloid fibril formation.
    Ivanova MI; Gingery M; Whitson LJ; Eisenberg D
    Biochemistry; 2003 Nov; 42(46):13536-40. PubMed ID: 14622000
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigating the Molecular Basis of the Aggregation Propensity of the Pathological D76N Mutant of Beta-2 Microglobulin: Role of the Denatured State.
    Visconti L; Malagrinò F; Broggini L; De Luca CMG; Moda F; Gianni S; Ricagno S; Toto A
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30669253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decoding the Structural Bases of D76N ß2-Microglobulin High Amyloidogenicity through Crystallography and Asn-Scan Mutagenesis.
    de Rosa M; Barbiroli A; Giorgetti S; Mangione PP; Bolognesi M; Ricagno S
    PLoS One; 2015; 10(12):e0144061. PubMed ID: 26625273
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Structural analysis of amyloid-fibrils of beta 2-microglobulin].
    Hoshino M
    Seikagaku; 2003 Feb; 75(2):143-8. PubMed ID: 12692974
    [No Abstract]   [Full Text] [Related]  

  • 37. An amyloid-forming segment of beta2-microglobulin suggests a molecular model for the fibril.
    Ivanova MI; Sawaya MR; Gingery M; Attinger A; Eisenberg D
    Proc Natl Acad Sci U S A; 2004 Jul; 101(29):10584-9. PubMed ID: 15249659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structure of a β
    Iadanza MG; Silvers R; Boardman J; Smith HI; Karamanos TK; Debelouchina GT; Su Y; Griffin RG; Ranson NA; Radford SE
    Nat Commun; 2018 Oct; 9(1):4517. PubMed ID: 30375379
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The monomer-seed interaction mechanism in the formation of the β2-microglobulin amyloid fibril clarified by solution NMR techniques.
    Yanagi K; Sakurai K; Yoshimura Y; Konuma T; Lee YH; Sugase K; Ikegami T; Naiki H; Goto Y
    J Mol Biol; 2012 Sep; 422(3):390-402. PubMed ID: 22683352
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A single disulfide bond differentiates aggregation pathways of beta2-microglobulin.
    Chen Y; Dokholyan NV
    J Mol Biol; 2005 Nov; 354(2):473-82. PubMed ID: 16242719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.