BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 25803614)

  • 1. ICan: an integrated co-alteration network to identify ovarian cancer-related genes.
    Zhou Y; Liu Y; Li K; Zhang R; Qiu F; Zhao N; Xu Y
    PLoS One; 2015; 10(3):e0116095. PubMed ID: 25803614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The functional consequences and prognostic value of dosage sensitivity in ovarian cancer.
    Yan Z; Liu Y; Wei Y; Zhao N; Zhang Q; Wu C; Chang Z; Xu Y
    Mol Biosyst; 2017 Jan; 13(2):380-391. PubMed ID: 28067383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CNAmet: an R package for integrating copy number, methylation and expression data.
    Louhimo R; Hautaniemi S
    Bioinformatics; 2011 Mar; 27(6):887-8. PubMed ID: 21228048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathway Relevance Ranking for Tumor Samples through Network-Based Data Integration.
    Verbeke LP; Van den Eynden J; Fierro AC; Demeester P; Fostier J; Marchal K
    PLoS One; 2015; 10(7):e0133503. PubMed ID: 26217958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data.
    El-Manzalawy Y; Hsieh TY; Shivakumar M; Kim D; Honavar V
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):71. PubMed ID: 30255801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative network analysis of TCGA data for ovarian cancer.
    Zhang Q; Burdette JE; Wang JP
    BMC Syst Biol; 2014 Dec; 8():1338. PubMed ID: 25551281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of multi-omics data to mine cancer-related gene modules.
    Li P; Guo M; Sun B
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950038. PubMed ID: 32019413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A network-pathway based module identification for predicting the prognosis of ovarian cancer patients.
    Wang X; Wang SS; Zhou L; Yu L; Zhang LM
    J Ovarian Res; 2016 Nov; 9(1):73. PubMed ID: 27806724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrative prediction of gene function and platinum-free survival from genomic and epigenetic features in ovarian cancer.
    Wrzeszczynski KO; Varadan V; Kamalakaran S; Levine DA; Dimitrova N; Lucito R
    Methods Mol Biol; 2013; 1049():35-51. PubMed ID: 23913207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes.
    Lu X; Li X; Liu P; Qian X; Miao Q; Peng S
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into Impact of DNA Copy Number Alteration and Methylation on the Proteogenomic Landscape of Human Ovarian Cancer via a Multi-omics Integrative Analysis.
    Song X; Ji J; Gleason KJ; Yang F; Martignetti JA; Chen LS; Wang P
    Mol Cell Proteomics; 2019 Aug; 18(8 suppl 1):S52-S65. PubMed ID: 31227599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of candidate cancer drivers by integrative Epi-DNA and Gene Expression (iEDGE) data analysis.
    Li A; Chapuy B; Varelas X; Sebastiani P; Monti S
    Sci Rep; 2019 Nov; 9(1):16904. PubMed ID: 31729402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying multi-layer gene regulatory modules from multi-dimensional genomic data.
    Li W; Zhang S; Liu CC; Zhou XJ
    Bioinformatics; 2012 Oct; 28(19):2458-66. PubMed ID: 22863767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomarker robustness reveals the PDGF network as driving disease outcome in ovarian cancer patients in multiple studies.
    Ben-Hamo R; Efroni S
    BMC Syst Biol; 2012 Jan; 6():3. PubMed ID: 22236809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of tumor suppressors and oncogenes from genomic and epigenetic features in ovarian cancer.
    Wrzeszczynski KO; Varadan V; Byrnes J; Lum E; Kamalakaran S; Levine DA; Dimitrova N; Zhang MQ; Lucito R
    PLoS One; 2011; 6(12):e28503. PubMed ID: 22174824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating multiple types of data to identify microRNA-gene co-modules.
    Zhang S
    Methods Mol Biol; 2013; 1049():215-29. PubMed ID: 23913219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrative network analysis to identify aberrant pathway networks in ovarian cancer.
    Chen L; Xuan J; Gu J; Wang Y; Zhang Z; Wang TL; Shih IeM
    Pac Symp Biocomput; 2012; ():31-42. PubMed ID: 22174260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A prognostic 11 genes expression model for ovarian cancer.
    Men CD; Liu QN; Ren Q
    J Cell Biochem; 2018 Feb; 119(2):1971-1978. PubMed ID: 28817186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concordance of copy number loss and down-regulation of tumor suppressor genes: a pan-cancer study.
    Zhao M; Zhao Z
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):532. PubMed ID: 27556634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.