These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25803622)

  • 1. Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering.
    Bigham-Sadegh A; Oryan A
    Connect Tissue Res; 2015 Jun; 56(3):175-94. PubMed ID: 25803622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in the establishment of defined mouse models for the study of fracture healing and bone regeneration.
    Holstein JH; Garcia P; Histing T; Kristen A; Scheuer C; Menger MD; Pohlemann T
    J Orthop Trauma; 2009; 23(5 Suppl):S31-8. PubMed ID: 19390374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of bone-graft substitutes in large bone defects: any specific needs?
    Calori GM; Mazza E; Colombo M; Ripamonti C
    Injury; 2011 Sep; 42 Suppl 2():S56-63. PubMed ID: 21752369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishment of a preclinical ovine screening model for the investigation of bone tissue engineering strategies in cancellous and cortical bone defects.
    Pobloth AM; Johnson KA; Schell H; Kolarczik N; Wulsten D; Duda GN; Schmidt-Bleek K
    BMC Musculoskelet Disord; 2016 Mar; 17():111. PubMed ID: 26932531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hard tissue regeneration using bone substitutes: an update on innovations in materials.
    Sarkar SK; Lee BT
    Korean J Intern Med; 2015 May; 30(3):279-93. PubMed ID: 25995658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Animal Models for Evaluation of Bone Implants and Devices: Comparative Bone Structure and Common Model Uses.
    Wancket LM
    Vet Pathol; 2015 Sep; 52(5):842-50. PubMed ID: 26163303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionalized biomimetic calcium phosphates for bone tissue repair.
    Bigi A; Boanini E
    J Appl Biomater Funct Mater; 2017 Nov; 15(4):e313-e325. PubMed ID: 28574097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The diamond concept--open questions.
    Giannoudis PV; Einhorn TA; Schmidmaier G; Marsh D
    Injury; 2008 Sep; 39 Suppl 2():S5-8. PubMed ID: 18804574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells.
    Janicki P; Schmidmaier G
    Injury; 2011 Sep; 42 Suppl 2():S77-81. PubMed ID: 21724186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell therapy for bone repair.
    Rosset P; Deschaseaux F; Layrolle P
    Orthop Traumatol Surg Res; 2014 Feb; 100(1 Suppl):S107-12. PubMed ID: 24411717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the modelling bone tissue fracture and healing of the bone tissue.
    Doblaré M; García JM
    Acta Cient Venez; 2003; 54(1):58-75. PubMed ID: 14515768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo model for evaluating the effects of mechanical stimulation on tissue-engineered bone repair.
    Boerckel JD; Dupont KM; Kolambkar YM; Lin AS; Guldberg RE
    J Biomech Eng; 2009 Aug; 131(8):084502. PubMed ID: 19604025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology.
    Yu D; Li Q; Mu X; Chang T; Xiong Z
    Int J Oral Maxillofac Surg; 2008 Oct; 37(10):929-34. PubMed ID: 18768295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone regeneration and fracture healing. Experience with distraction osteogenesis model.
    Richards M; Goulet JA; Weiss JA; Waanders NA; Schaffler MB; Goldstein SA
    Clin Orthop Relat Res; 1998 Oct; (355 Suppl):S191-204. PubMed ID: 9917639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From natural bone grafts to tissue engineering therapeutics: Brainstorming on pharmaceutical formulative requirements and challenges.
    Baroli B
    J Pharm Sci; 2009 Apr; 98(4):1317-75. PubMed ID: 18729202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injectable reactive biocomposites for bone healing in critical-size rabbit calvarial defects.
    Dumas JE; BrownBaer PB; Prieto EM; Guda T; Hale RG; Wenke JC; Guelcher SA
    Biomed Mater; 2012 Apr; 7(2):024112. PubMed ID: 22456057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone injury response. An animal model for testing theories of regulation.
    Landry PS; Marino AA; Sadasivan KK; Albright JA
    Clin Orthop Relat Res; 1996 Nov; (332):260-73. PubMed ID: 8913171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can we accelerate fracture healing? A critical analysis of the literature.
    Giannoudis P; Psarakis S; Kontakis G
    Injury; 2007 Mar; 38 Suppl 1():S81-9. PubMed ID: 17383489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical considerations of animal models used in tissue engineering of bone.
    Liebschner MA
    Biomaterials; 2004 Apr; 25(9):1697-714. PubMed ID: 14697871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Control of bone remodeling by nervous system. Neural involvement in fracture healing and bone regeneration].
    Suzuki A; Uemura T; Nakamura H
    Clin Calcium; 2010 Dec; 20(12):1820-7. PubMed ID: 21123934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.