These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 25803628)

  • 1. Sepsis, oxidative stress, and hypoxia: Are there clues to better treatment?
    Bar-Or D; Carrick MM; Mains CW; Rael LT; Slone D; Brody EN
    Redox Rep; 2015 Sep; 20(5):193-7. PubMed ID: 25803628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Propofol Prevents Oxidative Stress by Decreasing the Ischemic Accumulation of Succinate in Focal Cerebral Ischemia-Reperfusion Injury.
    Yu W; Gao D; Jin W; Liu S; Qi S
    Neurochem Res; 2018 Feb; 43(2):420-429. PubMed ID: 29168092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sepsis, mitochondrial failure and multiple organ dysfunction.
    Duran-Bedolla J; Montes de Oca-Sandoval MA; Saldaña-Navor V; Villalobos-Silva JA; Rodriguez MC; Rivas-Arancibia S
    Clin Invest Med; 2014 Apr; 37(2):E58-69. PubMed ID: 24690420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reactive oxygen species produced by liver mitochondria of rats in sepsis.
    Taylor DE; Ghio AJ; Piantadosi CA
    Arch Biochem Biophys; 1995 Jan; 316(1):70-6. PubMed ID: 7840680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence of oxidative stress and mitochondrial respiratory chain dysfunction in an in vitro model of sepsis-induced kidney injury.
    Quoilin C; Mouithys-Mickalad A; Lécart S; Fontaine-Aupart MP; Hoebeke M
    Biochim Biophys Acta; 2014 Oct; 1837(10):1790-800. PubMed ID: 25019585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative metabolism in sepsis and sepsis syndrome.
    Taylor DE; Piantadosi CA
    J Crit Care; 1995 Sep; 10(3):122-35. PubMed ID: 7496449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative metabolism in rat hepatocytes and mitochondria during sepsis.
    Kantrow SP; Taylor DE; Carraway MS; Piantadosi CA
    Arch Biochem Biophys; 1997 Sep; 345(2):278-88. PubMed ID: 9308900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interleukin-1 and interleukin-1 antagonism in sepsis, systemic inflammatory response syndrome, and septic shock.
    Pruitt JH; Copeland EM; Moldawer LL
    Shock; 1995 Apr; 3(4):235-51. PubMed ID: 7600191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative and inflammatory biomarkers of ischemia and reperfusion injuries.
    Halladin NL
    Dan Med J; 2015 Apr; 62(4):B5054. PubMed ID: 25872540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial dysfunction and antioxidant therapy in sepsis.
    Rocha M; Herance R; Rovira S; Hernández-Mijares A; Victor VM
    Infect Disord Drug Targets; 2012 Apr; 12(2):161-78. PubMed ID: 22420514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondria-Targeted Antioxidants and Uncouplers of Oxidative Phosphorylation in Treatment of the Systemic Inflammatory Response Syndrome (SIRS).
    Zakharova VV; Pletjushkina OY; Zinovkin RA; Popova EN; Chernyak BV
    J Cell Physiol; 2017 May; 232(5):904-912. PubMed ID: 27684052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of sepsis on mitochondria.
    Garrabou G; Morén C; López S; Tobías E; Cardellach F; Miró O; Casademont J
    J Infect Dis; 2012 Feb; 205(3):392-400. PubMed ID: 22180620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of free radicals in sepsis development.
    Andrades ME; Ritter C; Dal-Pizzol F
    Front Biosci (Elite Ed); 2009 Jun; 1(1):277-87. PubMed ID: 19482645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free radicals alter maximal diaphragmatic mitochondrial oxygen consumption in endotoxin-induced sepsis.
    Callahan LA; Stofan DA; Szweda LI; Nethery DE; Supinski GS
    Free Radic Biol Med; 2001 Jan; 30(1):129-38. PubMed ID: 11134903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondria in exercise-induced oxidative stress.
    Di Meo S; Venditti P
    Biol Signals Recept; 2001; 10(1-2):125-40. PubMed ID: 11223645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroprotective effects of gallic acid against hypoxia/reoxygenation-induced mitochondrial dysfunctions in vitro and cerebral ischemia/reperfusion injury in vivo.
    Sun J; Li YZ; Ding YH; Wang J; Geng J; Yang H; Ren J; Tang JY; Gao J
    Brain Res; 2014 Nov; 1589():126-39. PubMed ID: 25251593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular oxygen: friend and foe. The role of the oxygen free radical system in the calcium paradox, the oxygen paradox and ischemia/reperfusion injury.
    Hess ML; Manson NH
    J Mol Cell Cardiol; 1984 Nov; 16(11):969-85. PubMed ID: 6394765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DJ-1 preserving mitochondrial complex I activity plays a critical role in resveratrol-mediated cardioprotection against hypoxia/reoxygenation-induced oxidative stress.
    Zhang Y; Li XR; Zhao L; Duan GL; Xiao L; Chen HP
    Biomed Pharmacother; 2018 Feb; 98():545-552. PubMed ID: 29287203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and biomolecular aspects of oxidative stress due to acute and severe hypoxia in human muscle tissue.
    Corbucci GG; Sessego R; Velluti C; Salvi M
    Int J Tissue React; 1995; 17(3):125-7. PubMed ID: 8867652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Combination of Kidney Ischemia and Injection of Isolated Mitochondria Leads to Activation of Inflammation and Increase in Mortality Rate in Rats.
    Plotnikov EY; Jankauskas SS; Zinovkin RA; Zorova LD; Zorov SD; Pevzner IB; Silachev DN; Zorov DB
    Bull Exp Biol Med; 2020 Jun; 169(2):213-217. PubMed ID: 32651821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.