BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 25803683)

  • 1. Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.
    Segil JL; Controzzi M; Weir RF; Cipriani C
    J Rehabil Res Dev; 2014; 51(9):1439-54. PubMed ID: 25803683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel postural control algorithm for control of multifunctional myoelectric prosthetic hands.
    Segil JL; Weir RF
    J Rehabil Res Dev; 2015; 52(4):449-66. PubMed ID: 26348320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Assessment of a Myoelectric Postural Controller and Multi-Functional Prosthetic Hand by Persons With Trans-Radial Limb Loss.
    Segil JL; Huddle SA; Weir RFF
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):618-627. PubMed ID: 27390181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preliminary functional assessment of a multigrasp myoelectric prosthesis.
    Dalley SA; Bennett DA; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4172-5. PubMed ID: 23366847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stable, three degree-of-freedom myoelectric prosthetic control via chronic bipolar intramuscular electrodes: a case study.
    Dewald HA; Lukyanenko P; Lambrecht JM; Anderson JR; Tyler DJ; Kirsch RF; Williams MR
    J Neuroeng Rehabil; 2019 Nov; 16(1):147. PubMed ID: 31752886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method for the control of multigrasp myoelectric prosthetic hands.
    Dalley SA; Varol HA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jan; 20(1):58-67. PubMed ID: 22180515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of a multigrasp myoelectric control approach for use by transhumeral amputees.
    Alshammary NA; Dalley SA; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():968-71. PubMed ID: 23366055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multigrasp myoelectric control for a transradial prosthesis.
    Dalley SA; Varol HA; Goldfarb M
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975479. PubMed ID: 22275677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extrinsic finger and thumb muscles command a virtual hand to allow individual finger and grasp control.
    Birdwell JA; Hargrove LJ; Weir RF; Kuiken TA
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):218-26. PubMed ID: 25099395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time myoelectric control of a multi-fingered hand prosthesis using principal components analysis.
    Matrone GC; Cipriani C; Carrozza MC; Magenes G
    J Neuroeng Rehabil; 2012 Jun; 9():40. PubMed ID: 22703711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A synergy-driven approach to a myoelectric hand.
    Godfrey SB; Ajoudani A; Catalano M; Grioli G; Bicchi A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650377. PubMed ID: 24187196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable, simultaneous and proportional 4-DoF prosthetic hand control via synergy-inspired linear interpolation: a case series.
    Lukyanenko P; Dewald HA; Lambrecht J; Kirsch RF; Tyler DJ; Williams MR
    J Neuroeng Rehabil; 2021 Mar; 18(1):50. PubMed ID: 33736656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of regenerative peripheral nerve interfaces and intramuscular electrodes to improve prosthetic grasp selection: a case study.
    Lee C; Vaskov AK; Gonzalez MA; Vu PP; Davis AJ; Cederna PS; Chestek CA; Gates DH
    J Neural Eng; 2022 Nov; 19(6):. PubMed ID: 36317254
    [No Abstract]   [Full Text] [Related]  

  • 16. Closed-Loop Multi-Amplitude Control for Robust and Dexterous Performance of Myoelectric Prosthesis.
    Markovic M; Varel M; Schweisfurth MA; Schilling AF; Dosen S
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):498-507. PubMed ID: 31841418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions.
    Waris A; Niazi IK; Jamil M; Englehart K; Jensen W; Kamavuako EN
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1526-1534. PubMed ID: 30106701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
    Huang S; Wensman JP; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel myoelectric training device for upper limb prostheses.
    Clingman R; Pidcoe P
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):879-85. PubMed ID: 24710835
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving internal model strength and performance of prosthetic hands using augmented feedback.
    Shehata AW; Engels LF; Controzzi M; Cipriani C; Scheme EJ; Sensinger JW
    J Neuroeng Rehabil; 2018 Jul; 15(1):70. PubMed ID: 30064477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.