These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 25803683)

  • 21. Brain activation during manipulation of the myoelectric prosthetic hand: a functional magnetic resonance imaging study.
    Maruishi M; Tanaka Y; Muranaka H; Tsuji T; Ozawa Y; Imaizumi S; Miyatani M; Kawahara J
    Neuroimage; 2004 Apr; 21(4):1604-11. PubMed ID: 15050584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional assessment of the Vanderbilt Multigrasp myoelectric hand: a continuing case study.
    Dalley SA; Bennett DA; Goldfarb M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6195-8. PubMed ID: 25571412
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Myoelectric Control System and Task-Specific Characteristics Affect Voluntary Use of Simultaneous Control.
    Smith LH; Kuiken TA; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):109-16. PubMed ID: 25769167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and validation of a morphing myoelectric hand posture controller based on principal component analysis of human grasping.
    Segil JL; Weir RF
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):249-57. PubMed ID: 23649286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Myoelectric Control Based on a Generic Musculoskeletal Model: Toward a Multi-User Neural-Machine Interface.
    Pan L; Crouch DL; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1435-1442. PubMed ID: 29985153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selection of suitable hand gestures for reliable myoelectric human computer interface.
    Castro MC; Arjunan SP; Kumar DK
    Biomed Eng Online; 2015 Apr; 14():30. PubMed ID: 25889735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features.
    Khushaba RN; Takruri M; Miro JV; Kodagoda S
    Neural Netw; 2014 Jul; 55():42-58. PubMed ID: 24721224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time myoelectric decoding of individual finger movements for a virtual target task.
    Smith RJ; Huberdeau D; Tenore F; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2376-9. PubMed ID: 19965192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of control format and hand design in single axis myoelectric hands: assessment of functionality of prosthetic hands using the Southampton Hand Assessment Procedure.
    Kyberd PJ
    Prosthet Orthot Int; 2011 Sep; 35(3):285-93. PubMed ID: 21937574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Control of a Robotic Hand Using a Tongue Control System-A Prosthesis Application.
    Johansen D; Cipriani C; Popovic DB; Struijk LN
    IEEE Trans Biomed Eng; 2016 Jul; 63(7):1368-76. PubMed ID: 26780786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand.
    Chu JU; Moon I; Mun MS
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2232-9. PubMed ID: 17073328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A dynamic model of hand movements for proportional myoelectric control of a hand prosthesis
    Beninati G; Sanguineti V
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6648-6651. PubMed ID: 31947366
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preliminary results toward a naturally controlled multi-synergistic prosthetic hand.
    Rossi M; Della Santina C; Piazza C; Grioli G; Catalano M; Biechi A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1356-1363. PubMed ID: 28814009
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control within a virtual environment is correlated to functional outcomes when using a physical prosthesis.
    Hargrove L; Miller L; Turner K; Kuiken T
    J Neuroeng Rehabil; 2018 Sep; 15(Suppl 1):60. PubMed ID: 30255800
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A multifaceted suite of metrics for comparative myoelectric prosthesis controller research.
    Williams HE; Shehata AW; Cheng KY; Hebert JS; Pilarski PM
    PLoS One; 2024; 19(5):e0291279. PubMed ID: 38739557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Learning regularized representations of categorically labelled surface EMG enables simultaneous and proportional myoelectric control.
    Olsson AE; Malešević N; Björkman A; Antfolk C
    J Neuroeng Rehabil; 2021 Feb; 18(1):35. PubMed ID: 33588868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hybrid Tongue - Myoelectric Control Improves Functional Use of a Robotic Hand Prosthesis.
    Johansen D; Popovic DB; Dosen S; Struijk LNSA
    IEEE Trans Biomed Eng; 2021 Jun; 68(6):2011-2020. PubMed ID: 33449876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay.
    Smith LH; Hargrove LJ; Lock BA; Kuiken TA
    IEEE Trans Neural Syst Rehabil Eng; 2011 Apr; 19(2):186-92. PubMed ID: 21193383
    [TBL] [Abstract][Full Text] [Related]  

  • 39. System training and assessment in simultaneous proportional myoelectric prosthesis control.
    Fougner AL; Stavdahl O; Kyberd PJ
    J Neuroeng Rehabil; 2014 Apr; 11():75. PubMed ID: 24775602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human-Machine Interface for the Control of Multi-Function Systems Based on Electrocutaneous Menu: Application to Multi-Grasp Prosthetic Hands.
    Gonzalez-Vargas J; Dosen S; Amsuess S; Yu W; Farina D
    PLoS One; 2015; 10(6):e0127528. PubMed ID: 26069961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.