These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Modelled impact of Tiny Targets on the distribution and abundance of riverine tsetse. Vale GA; Hargrove JW; Hope A; Torr SJ PLoS Negl Trop Dis; 2024 Apr; 18(4):e0011578. PubMed ID: 38626189 [TBL] [Abstract][Full Text] [Related]
3. Is the even distribution of insecticide-treated cattle essential for tsetse control? Modelling the impact of baits in heterogeneous environments. Torr SJ; Vale GA PLoS Negl Trop Dis; 2011 Oct; 5(10):e1360. PubMed ID: 22028944 [TBL] [Abstract][Full Text] [Related]
4. Baited-boats: an innovative way to control riverine tsetse, vectors of sleeping sickness in West Africa. Rayaisse JB; Salou E; Courtin F; Yoni W; Barry I; Dofini F; Kagbadouno M; Camara M; Torr SJ; Solano P Parasit Vectors; 2015 Apr; 8():236. PubMed ID: 25928366 [TBL] [Abstract][Full Text] [Related]
5. Delivering 'tiny targets' in a remote region of southern Chad: a cost analysis of tsetse control in the Mandoul sleeping sickness focus. Rayaisse JB; Courtin F; Mahamat MH; Chérif M; Yoni W; Gadjibet NMO; Peka M; Solano P; Torr SJ; Shaw APM Parasit Vectors; 2020 Aug; 13(1):419. PubMed ID: 32795375 [TBL] [Abstract][Full Text] [Related]
6. The cost of tsetse control using 'Tiny Targets' in the sleeping sickness endemic forest area of Bonon in Côte d'Ivoire: Implications for comparing costs across different settings. Courtin F; Kaba D; Rayaisse JB; Solano P; Torr SJ; Shaw APM PLoS Negl Trop Dis; 2022 Jan; 16(1):e0010033. PubMed ID: 34986176 [TBL] [Abstract][Full Text] [Related]
7. The sequential aerosol technique: a major component in an integrated strategy of intervention against Riverine Tsetse in Ghana. Adam Y; Cecchi G; Kgori PM; Marcotty T; Mahama CI; Abavana M; Anderson B; Paone M; Mattioli R; Bouyer J PLoS Negl Trop Dis; 2013; 7(3):e2135. PubMed ID: 23516662 [TBL] [Abstract][Full Text] [Related]
8. Towards an optimal design of target for tsetse control: comparisons of novel targets for the control of Palpalis group tsetse in West Africa. Rayaisse JB; Esterhuizen J; Tirados I; Kaba D; Salou E; Diarrassouba A; Vale GA; Lehane MJ; Torr SJ; Solano P PLoS Negl Trop Dis; 2011 Sep; 5(9):e1332. PubMed ID: 21949896 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of improved coloured targets to control riverine tsetse in East Africa: A Bayesian approach. Santer RD; Okal MN; Esterhuizen J; Torr SJ PLoS Negl Trop Dis; 2021 Jun; 15(6):e0009463. PubMed ID: 34153040 [TBL] [Abstract][Full Text] [Related]
10. Adding tsetse control to medical activities contributes to decreasing transmission of sleeping sickness in the Mandoul focus (Chad). Mahamat MH; Peka M; Rayaisse JB; Rock KS; Toko MA; Darnas J; Brahim GM; Alkatib AB; Yoni W; Tirados I; Courtin F; Brand SPC; Nersy C; Alfaroukh IO; Torr SJ; Lehane MJ; Solano P PLoS Negl Trop Dis; 2017 Jul; 11(7):e0005792. PubMed ID: 28750007 [TBL] [Abstract][Full Text] [Related]
11. Improving the cost-effectiveness of visual devices for the control of riverine tsetse flies, the major vectors of human African trypanosomiasis. Esterhuizen J; Rayaisse JB; Tirados I; Mpiana S; Solano P; Vale GA; Lehane MJ; Torr SJ PLoS Negl Trop Dis; 2011 Aug; 5(8):e1257. PubMed ID: 21829743 [TBL] [Abstract][Full Text] [Related]
12. Cost analysis of options for management of African Animal Trypanosomiasis using interventions targeted at cattle in Tororo District; south-eastern Uganda. Muhanguzi D; Okello WO; Kabasa JD; Waiswa C; Welburn SC; Shaw AP Parasit Vectors; 2015 Jul; 8():387. PubMed ID: 26198109 [TBL] [Abstract][Full Text] [Related]
13. Estimating the impact of Tiny Targets in reducing the incidence of Gambian sleeping sickness in the North-west Uganda focus. Bessell PR; Esterhuizen J; Lehane MJ; Longbottom J; Mugenyi A; Selby R; Tirados I; Torr SJ; Waiswa C; Wamboga C; Hope A Parasit Vectors; 2021 Aug; 14(1):410. PubMed ID: 34407867 [TBL] [Abstract][Full Text] [Related]
14. Estimating the costs of tsetse control options: an example for Uganda. Shaw AP; Torr SJ; Waiswa C; Cecchi G; Wint GR; Mattioli RC; Robinson TP Prev Vet Med; 2013 Jul; 110(3-4):290-303. PubMed ID: 23453892 [TBL] [Abstract][Full Text] [Related]
15. Costs of using "tiny targets" to control Glossina fuscipes fuscipes, a vector of gambiense sleeping sickness in Arua District of Uganda. Shaw AP; Tirados I; Mangwiro CT; Esterhuizen J; Lehane MJ; Torr SJ; Kovacic V PLoS Negl Trop Dis; 2015 Mar; 9(3):e0003624. PubMed ID: 25811956 [TBL] [Abstract][Full Text] [Related]
17. The development of high resolution maps of tsetse abundance to guide interventions against human African trypanosomiasis in northern Uganda. Stanton MC; Esterhuizen J; Tirados I; Betts H; Torr SJ Parasit Vectors; 2018 Jun; 11(1):340. PubMed ID: 29884213 [TBL] [Abstract][Full Text] [Related]
18. Scaling up of tsetse control to eliminate Gambian sleeping sickness in northern Uganda. Hope A; Mugenyi A; Esterhuizen J; Tirados I; Cunningham L; Garrod G; Lehane MJ; Longbottom J; Mangwiro TC; Opiyo M; Stanton M; Torr SJ; Vale GA; Waiswa C; Selby R PLoS Negl Trop Dis; 2022 Jun; 16(6):e0010222. PubMed ID: 35767572 [TBL] [Abstract][Full Text] [Related]
19. Impact of tiny targets on Glossina fuscipes quanzensis, the primary vector of human African trypanosomiasis in the Democratic Republic of the Congo. Tirados I; Hope A; Selby R; Mpembele F; Miaka EM; Boelaert M; Lehane MJ; Torr SJ; Stanton MC PLoS Negl Trop Dis; 2020 Oct; 14(10):e0008270. PubMed ID: 33064783 [TBL] [Abstract][Full Text] [Related]
20. Use of vector control to protect people from sleeping sickness in the focus of Bonon (Côte d'Ivoire). Kaba D; Djohan V; Berté D; Ta BTD; Selby R; Kouadio KAM; Coulibaly B; Traoré G; Rayaisse JB; Fauret P; Jamonneau V; Lingue K; Solano P; Torr SJ; Courtin F PLoS Negl Trop Dis; 2021 Jun; 15(6):e0009404. PubMed ID: 34181651 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]