BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 25803896)

  • 1. [Characterization of Candida albicans ferric reductase genes in response to environmental stresses].
    Xu N; Liang Y; Cheng X; Qian K; Yu Q; Li M
    Wei Sheng Wu Xue Bao; 2014 Oct; 54(10):1185-92. PubMed ID: 25803896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Function of ferric reductase FRP1 gene in Candida albicans].
    Liang Y; Zheng W; Wei D; Xing L; Li M
    Wei Sheng Wu Xue Bao; 2009 Mar; 49(3):337-42. PubMed ID: 19623957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel role of the Candida albicans ferric reductase gene CFL1 in iron acquisition, oxidative stress tolerance, morphogenesis and virulence.
    Xu N; Qian K; Dong Y; Chen Y; Yu Q; Zhang B; Xing L; Li M
    Res Microbiol; 2014 Apr; 165(3):252-61. PubMed ID: 24631590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferric reductase genes involved in high-affinity iron uptake are differentially regulated in yeast and hyphae of Candida albicans.
    Jeeves RE; Mason RP; Woodacre A; Cashmore AM
    Yeast; 2011 Sep; 28(9):629-44. PubMed ID: 21823165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Candida albicans ferric reductases are differentially regulated in response to distinct forms of iron limitation by the Rim101 and CBF transcription factors.
    Baek YU; Li M; Davis DA
    Eukaryot Cell; 2008 Jul; 7(7):1168-79. PubMed ID: 18503007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Candida albicans ferric reductase FRP1 is regulated by direct interaction with Rim101p transcription factor.
    Liang Y; Gui L; Wei DS; Zheng W; Xing LJ; Li MC
    FEMS Yeast Res; 2009 Mar; 9(2):270-7. PubMed ID: 19076241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel role of the ferric reductase Cfl1 in cell wall integrity, mitochondrial function, and invasion to host cells in Candida albicans.
    Yu Q; Dong Y; Xu N; Qian K; Chen Y; Zhang B; Xing L; Li M
    FEMS Yeast Res; 2014 Nov; 14(7):1037-47. PubMed ID: 25130162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Regulating promoter element of iron-dependent gene FRP1 in Candida albicans by site-directed mutation].
    Gui L; Liang Y; Wei D; Zheng W; Xing L; Li M
    Sheng Wu Gong Cheng Xue Bao; 2008 Aug; 24(8):1348-53. PubMed ID: 18998534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcript profiling reveals rewiring of iron assimilation gene expression in Candida albicans and C. dubliniensis.
    Moran GP
    FEMS Yeast Res; 2012 Dec; 12(8):918-23. PubMed ID: 22888912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PUTATIVE FERROXIDASES IN THE FLAVINOGENIC YEAST PICHIA GUILLIERMONDII ARE REGULATED BY IRON ACQUISITION.
    Fedorovych D; Boretsky Y; Bobak Y; Prokopiv T; Sybirny A
    Tsitol Genet; 2015; 49(5):13-9. PubMed ID: 26638492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferric reductase-related proteins mediate fungal heme acquisition.
    Roy U; Yaish S; Weissman Z; Pinsky M; Dey S; Horev G; Kornitzer D
    Elife; 2022 Oct; 11():. PubMed ID: 36200752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator.
    Knight SAB; Lesuisse E; Stearman R; Klausner RD; Dancis A
    Microbiology (Reading); 2002 Jan; 148(Pt 1):29-40. PubMed ID: 11782496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and characterization of Cor33p, a novel protein implicated in tolerance towards oxidative stress in Candida albicans.
    Sohn K; Roehm M; Urban C; Saunders N; Rothenstein D; Lottspeich F; Schröppel K; Brunner H; Rupp S
    Eukaryot Cell; 2005 Dec; 4(12):2160-9. PubMed ID: 16339733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p.
    Bensen ES; Martin SJ; Li M; Berman J; Davis DA
    Mol Microbiol; 2004 Dec; 54(5):1335-51. PubMed ID: 15554973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Regulation of cell growth and filamentation in Candida albicans by high-affinity iron permeases Ftr1 and Ftr2].
    Du H; Zhu L
    Wei Sheng Wu Xue Bao; 2015 May; 55(5):579-86. PubMed ID: 26259482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Candida albicans Aft2p transcription factor in ferric reductase activity, morphogenesis and virulence.
    Liang Y; Wei D; Wang H; Xu N; Zhang B; Xing L; Li M
    Microbiology (Reading); 2010 Oct; 156(Pt 10):2912-2919. PubMed ID: 20595261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Candida albicans CFL1 encodes a functional ferric reductase activity that can rescue a Saccharomyces cerevisiae fre1 mutant.
    Hammacott JE; Williams PH; Cashmore AM
    Microbiology (Reading); 2000 Apr; 146 ( Pt 4)():869-876. PubMed ID: 10784045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and functional characterization of a novel Candida albicans gene CaMNN5 that suppresses the iron-dependent growth defect of Saccharomyces cerevisiae aft1Delta mutant.
    Bai C; Chan FY; Wang Y
    Biochem J; 2005 Jul; 389(Pt 1):27-35. PubMed ID: 15725072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron acquisition from transferrin by Candida albicans depends on the reductive pathway.
    Knight SA; Vilaire G; Lesuisse E; Dancis A
    Infect Immun; 2005 Sep; 73(9):5482-92. PubMed ID: 16113264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkaline stress triggers an immediate calcium fluctuation in Candida albicans mediated by Rim101p and Crz1p transcription factors.
    Wang H; Liang Y; Zhang B; Zheng W; Xing L; Li M
    FEMS Yeast Res; 2011 Aug; 11(5):430-9. PubMed ID: 21457451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.