These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 25804213)
1. Role of the PhoP-PhoQ gene regulatory system in adaptation of Yersinia pestis to environmental stress in the flea digestive tract. Vadyvaloo V; Viall AK; Jarrett CO; Hinz AK; Sturdevant DE; Joseph Hinnebusch B Microbiology (Reading); 2015 Jun; 161(6):1198-1210. PubMed ID: 25804213 [TBL] [Abstract][Full Text] [Related]
2. Induction of the Yersinia pestis PhoP-PhoQ regulatory system in the flea and its role in producing a transmissible infection. Rebeil R; Jarrett CO; Driver JD; Ernst RK; Oyston PC; Hinnebusch BJ J Bacteriol; 2013 May; 195(9):1920-30. PubMed ID: 23435973 [TBL] [Abstract][Full Text] [Related]
3. CsrA Enhances Cyclic-di-GMP Biosynthesis and Yersinia pestis Biofilm Blockage of the Flea Foregut by Alleviating Hfq-Dependent Repression of the Silva-Rohwer AR; Held K; Sagawa J; Fernandez NL; Waters CM; Vadyvaloo V mBio; 2021 Aug; 12(4):e0135821. PubMed ID: 34340543 [TBL] [Abstract][Full Text] [Related]
4. Hfq regulates biofilm gut blockage that facilitates flea-borne transmission of Yersinia pestis. Rempe KA; Hinz AK; Vadyvaloo V J Bacteriol; 2012 Apr; 194(8):2036-40. PubMed ID: 22328669 [TBL] [Abstract][Full Text] [Related]
5. Transit through the flea vector induces a pretransmission innate immunity resistance phenotype in Yersinia pestis. Vadyvaloo V; Jarrett C; Sturdevant DE; Sebbane F; Hinnebusch BJ PLoS Pathog; 2010 Feb; 6(2):e1000783. PubMed ID: 20195507 [TBL] [Abstract][Full Text] [Related]
6. Influence of Temperature on Development of Yersinia pestis Foregut Blockage in Xenopsylla cheopis (Siphonaptera: Pulicidae) and Oropsylla montana (Siphonaptera: Ceratophyllidae). Lemon A; Cherzan N; Vadyvaloo V J Med Entomol; 2020 Nov; 57(6):1997-2007. PubMed ID: 32533162 [TBL] [Abstract][Full Text] [Related]
7. The CpxAR signaling system confers a fitness advantage for flea gut colonization by the plague bacillus. Robin B; Dewitte A; Alaimo V; Lecoeur C; Pierre F; Billon G; Sebbane F; Bontemps-Gallo S J Bacteriol; 2024 Sep; 206(9):e0017324. PubMed ID: 39158280 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional regulation of Yersinia pestis biofilm formation. Liu L; Zheng S Microb Pathog; 2019 Jun; 131():212-217. PubMed ID: 30980880 [TBL] [Abstract][Full Text] [Related]
9. Transcriptomic profiling of the digestive tract of the rat flea, Xenopsylla cheopis, following blood feeding and infection with Yersinia pestis. Bland DM; Martens CA; Virtaneva K; Kanakabandi K; Long D; Rosenke R; Saturday GA; Hoyt FH; Bruno DP; Ribeiro JM; Hinnebusch BJ PLoS Negl Trop Dis; 2020 Sep; 14(9):e0008688. PubMed ID: 32946437 [TBL] [Abstract][Full Text] [Related]
10. Role of the Jarrett CO; Leung JM; Motoshi S; Sturdevant DE; Zhang Y; Hoyt FH; Hinnebusch BJ mBio; 2024 Jun; 15(6):e0012424. PubMed ID: 38722159 [TBL] [Abstract][Full Text] [Related]
11. A Single Amino Acid Change in the Response Regulator PhoP, Acquired during Yersinia pestis Evolution, Affects PhoP Target Gene Transcription and Polymyxin B Susceptibility. Fukuto HS; Vadyvaloo V; McPhee JB; Poinar HN; Holmes EC; Bliska JB J Bacteriol; 2018 May; 200(9):. PubMed ID: 29440252 [No Abstract] [Full Text] [Related]
12. Serotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis. Erickson DL; Jarrett CO; Wren BW; Hinnebusch BJ J Bacteriol; 2006 Feb; 188(3):1113-9. PubMed ID: 16428415 [TBL] [Abstract][Full Text] [Related]
13. Molecular and Genetic Mechanisms That Mediate Transmission of Hinnebusch BJ; Jarrett CO; Bland DM Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33546271 [TBL] [Abstract][Full Text] [Related]
14. The role of the phoPQ operon in the pathogenesis of the fully virulent CO92 strain of Yersinia pestis and the IP32953 strain of Yersinia pseudotuberculosis. Bozue J; Mou S; Moody KL; Cote CK; Trevino S; Fritz D; Worsham P Microb Pathog; 2011 Jun; 50(6):314-21. PubMed ID: 21320584 [TBL] [Abstract][Full Text] [Related]
15. Nutrient depletion may trigger the Yersinia pestis OmpR-EnvZ regulatory system to promote flea-borne plague transmission. Bontemps-Gallo S; Fernandez M; Dewitte A; Raphaël E; Gherardini FC; Elizabeth P; Koch L; Biot F; Reboul A; Sebbane F Mol Microbiol; 2019 Nov; 112(5):1471-1482. PubMed ID: 31424585 [TBL] [Abstract][Full Text] [Related]
16. "Fleaing" the Plague: Adaptations of Yersinia pestis to Its Insect Vector That Lead to Transmission. Hinnebusch BJ; Jarrett CO; Bland DM Annu Rev Microbiol; 2017 Sep; 71():215-232. PubMed ID: 28886687 [TBL] [Abstract][Full Text] [Related]
17. A LysR-Type Transcriptional Regulator, RovM, Senses Nutritional Cues Suggesting that It Is Involved in Metabolic Adaptation of Yersinia pestis to the Flea Gut. Vadyvaloo V; Hinz AK PLoS One; 2015; 10(9):e0137508. PubMed ID: 26348850 [TBL] [Abstract][Full Text] [Related]
18. A refined model of how Yersinia pestis produces a transmissible infection in its flea vector. Dewitte A; Bouvenot T; Pierre F; Ricard I; Pradel E; Barois N; Hujeux A; Bontemps-Gallo S; Sebbane F PLoS Pathog; 2020 Apr; 16(4):e1008440. PubMed ID: 32294143 [TBL] [Abstract][Full Text] [Related]