These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 25804541)
1. Pea VEGETATIVE2 Is an FD Homolog That Is Essential for Flowering and Compound Inflorescence Development. Sussmilch FC; Berbel A; Hecht V; Vander Schoor JK; Ferrándiz C; Madueño F; Weller JL Plant Cell; 2015 Apr; 27(4):1046-60. PubMed ID: 25804541 [TBL] [Abstract][Full Text] [Related]
2. VEGETATIVE1 is essential for development of the compound inflorescence in pea. Berbel A; Ferrándiz C; Hecht V; Dalmais M; Lund OS; Sussmilch FC; Taylor SA; Bendahmane A; Ellis TH; Beltrán JP; Weller JL; Madueño F Nat Commun; 2012 Apr; 3():797. PubMed ID: 22531182 [TBL] [Abstract][Full Text] [Related]
3. DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Foucher F; Morin J; Courtiade J; Cadioux S; Ellis N; Banfield MJ; Rameau C Plant Cell; 2003 Nov; 15(11):2742-54. PubMed ID: 14563931 [TBL] [Abstract][Full Text] [Related]
4. Analysis of pea mutants reveals the conserved role of Martínez-Fernández I; Fourquin C; Lindsay D; Berbel A; Balanzà V; Huang S; Dalmais M; LeSignor C; Bendahmane A; Warkentin TD; Madueño F; Ferrándiz C Proc Natl Acad Sci U S A; 2024 Apr; 121(15):e2321975121. PubMed ID: 38557190 [TBL] [Abstract][Full Text] [Related]
5. Specification of reproductive meristems requires the combined function of SHOOT MERISTEMLESS and floral integrators FLOWERING LOCUS T and FD during Arabidopsis inflorescence development. Smith HM; Ung N; Lal S; Courtier J J Exp Bot; 2011 Jan; 62(2):583-93. PubMed ID: 20937733 [TBL] [Abstract][Full Text] [Related]
6. The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Hecht V; Laurie RE; Vander Schoor JK; Ridge S; Knowles CL; Liew LC; Sussmilch FC; Murfet IC; Macknight RC; Weller JL Plant Cell; 2011 Jan; 23(1):147-61. PubMed ID: 21282524 [TBL] [Abstract][Full Text] [Related]
7. Functional conservation of PISTILLATA activity in a pea homolog lacking the PI motif. Berbel A; Navarro C; Ferrándiz C; Cañas LA; Beltrán JP; Madueño F Plant Physiol; 2005 Sep; 139(1):174-85. PubMed ID: 16113230 [TBL] [Abstract][Full Text] [Related]
8. Dissection of genetic regulation of compound inflorescence development in Cheng X; Li G; Tang Y; Wen J Development; 2018 Feb; 145(3):. PubMed ID: 29361570 [TBL] [Abstract][Full Text] [Related]
9. Identification of LATE BLOOMER2 as a CYCLING DOF FACTOR Homolog Reveals Conserved and Divergent Features of the Flowering Response to Photoperiod in Pea. Ridge S; Sussmilch FC; Hecht V; Vander Schoor JK; Lee R; Aubert G; Burstin J; Macknight RC; Weller JL Plant Cell; 2016 Oct; 28(10):2545-2559. PubMed ID: 27670672 [TBL] [Abstract][Full Text] [Related]
10. FRUITFULL-like genes regulate flowering time and inflorescence architecture in tomato. Jiang X; Lubini G; Hernandes-Lopes J; Rijnsburger K; Veltkamp V; de Maagd RA; Angenent GC; Bemer M Plant Cell; 2022 Mar; 34(3):1002-1019. PubMed ID: 34893888 [TBL] [Abstract][Full Text] [Related]
11. DIE NEUTRALIS and LATE BLOOMER 1 contribute to regulation of the pea circadian clock. Liew LC; Hecht V; Laurie RE; Knowles CL; Vander Schoor JK; Macknight RC; Weller JL Plant Cell; 2009 Oct; 21(10):3198-211. PubMed ID: 19843842 [TBL] [Abstract][Full Text] [Related]
12. MtFDa is essential for flowering control and inflorescence development in Medicago truncatula. Zhang P; Liu H; Mysore KS; Wen J; Meng Y; Lin H; Niu L J Plant Physiol; 2021 May; 260():153412. PubMed ID: 33845341 [TBL] [Abstract][Full Text] [Related]
14. Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Benlloch R; d'Erfurth I; Ferrandiz C; Cosson V; Beltrán JP; Cañas LA; Kondorosi A; Madueño F; Ratet P Plant Physiol; 2006 Nov; 142(3):972-83. PubMed ID: 16963524 [TBL] [Abstract][Full Text] [Related]
15. Seed production determines the entrance to dormancy of the inflorescence meristem of Pisum sativum and the end of the flowering period. Burillo E; Ortega R; Vander Schoor JK; Martínez-Fernández I; Weller JL; Bombarely A; Balanzà V; Ferrándiz C Physiol Plant; 2024; 176(4):e14425. PubMed ID: 38982330 [TBL] [Abstract][Full Text] [Related]
16. Control of flowering and inflorescence architecture in tomato by synergistic interactions between ALOG transcription factors. Huang X; Tang L; Yu Y; Dalrymple J; Lippman ZB; Xu C J Genet Genomics; 2018 Oct; 45(10):557-560. PubMed ID: 30352732 [No Abstract] [Full Text] [Related]
17. FUL homologous gene CmFL1 is involved in regulating flowering time and floret numbers in Chrysanthemum morifolium. Zhao K; Jia D; Zhang X; Li S; Su J; Jiang J; Chen S; Chen F; Ding L Plant Sci; 2023 Nov; 336():111863. PubMed ID: 37683984 [TBL] [Abstract][Full Text] [Related]
18. Is LEAFY a useful marker gene for the flower-inflorescence boundary in the Euphorbia cyathium? Prenner G; Cacho NI; Baum D; Rudall PJ J Exp Bot; 2011 Jan; 62(1):345-50. PubMed ID: 20965944 [TBL] [Abstract][Full Text] [Related]
19. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Hanano S; Goto K Plant Cell; 2011 Sep; 23(9):3172-84. PubMed ID: 21890645 [TBL] [Abstract][Full Text] [Related]
20. Analysis of two TFL1 homologs of dogwood species (Cornus L.) indicates functional conservation in control of transition to flowering. Liu X; Zhang J; Abuahmad A; Franks RG; Xie DY; Xiang QY Planta; 2016 May; 243(5):1129-41. PubMed ID: 26825444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]