These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 25804609)

  • 1. A microfluidic device based on an evaporation-driven micropump.
    Nie C; Frijns AJ; Mandamparambil R; den Toonder JM
    Biomed Microdevices; 2015 Apr; 17(2):47. PubMed ID: 25804609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogel-enabled osmotic pumping for microfluidics: towards wearable human-device interfaces.
    Shay T; Dickey MD; Velev OD
    Lab Chip; 2017 Feb; 17(4):710-716. PubMed ID: 28150821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Capillary-Evaporation Micropump for Real-Time Sweat Rate Monitoring with an Electrochemical Sensor.
    Chen XM; Li YJ; Han D; Zhu HC; Xue CD; Chui HC; Cao T; Qin KR
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31284628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Wearable Microfluidic Sensing Patch for Dynamic Sweat Secretion Analysis.
    Nyein HYY; Tai LC; Ngo QP; Chao M; Zhang GB; Gao W; Bariya M; Bullock J; Kim H; Fahad HM; Javey A
    ACS Sens; 2018 May; 3(5):944-952. PubMed ID: 29741360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-power microfluidic electro-hydraulic pump (EHP).
    Lui C; Stelick S; Cady N; Batt C
    Lab Chip; 2010 Jan; 10(1):74-9. PubMed ID: 20024053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable tesla valve-based sweat collection device for sweat colorimetric analysis.
    Shi H; Cao Y; Zeng Y; Zhou Y; Wen W; Zhang C; Zhao Y; Chen Z
    Talanta; 2022 Apr; 240():123208. PubMed ID: 34998143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Digital nanoliter to milliliter flow rate sensor with in vivo demonstration for continuous sweat rate measurement.
    Francis J; Stamper I; Heikenfeld J; Gomez EF
    Lab Chip; 2018 Dec; 19(1):178-185. PubMed ID: 30525141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A water-activated pump for portable microfluidic applications.
    Good BT; Bowman CN; Davis RH
    J Colloid Interface Sci; 2007 Jan; 305(2):239-49. PubMed ID: 17081553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A smart and portable micropump for stable liquid delivery.
    Zhang X; Xia K; Ji A; Xiang N
    Electrophoresis; 2019 Mar; 40(6):865-872. PubMed ID: 30628114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skin-interfaced microfluidic devices with one-opening chambers and hydrophobic valves for sweat collection and analysis.
    Zhang Y; Chen Y; Huang J; Liu Y; Peng J; Chen S; Song K; Ouyang X; Cheng H; Wang X
    Lab Chip; 2020 Aug; 20(15):2635-2645. PubMed ID: 32555915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passive microfluidic pumping using coupled capillary/evaporation effects.
    Lynn NS; Dandy DS
    Lab Chip; 2009 Dec; 9(23):3422-9. PubMed ID: 19904410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thin, Soft, Skin-Mounted Microfluidic Networks with Capillary Bursting Valves for Chrono-Sampling of Sweat.
    Choi J; Kang D; Han S; Kim SB; Rogers JA
    Adv Healthc Mater; 2017 Mar; 6(5):. PubMed ID: 28105745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wearable microfluidics: fabric-based digital droplet flowmetry for perspiration analysis.
    Yang Y; Xing S; Fang Z; Li R; Koo H; Pan T
    Lab Chip; 2017 Feb; 17(5):926-935. PubMed ID: 28197582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings.
    Reeder JT; Choi J; Xue Y; Gutruf P; Hanson J; Liu M; Ray T; Bandodkar AJ; Avila R; Xia W; Krishnan S; Xu S; Barnes K; Pahnke M; Ghaffari R; Huang Y; Rogers JA
    Sci Adv; 2019 Jan; 5(1):eaau6356. PubMed ID: 30746456
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Cahill JF; Khalid M; Retterer ST; Walton CL; Kertesz V
    J Am Soc Mass Spectrom; 2020 Apr; 31(4):832-839. PubMed ID: 32233378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature Gradients Drive Bulk Flow Within Microchannel Lined by Fluid-Fluid Interfaces.
    Amador GJ; Ren Z; Tabak AF; Alapan Y; Yasa O; Sitti M
    Small; 2019 May; 15(21):e1900472. PubMed ID: 30993841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of a micropump based on capillary and evaporation effects in a microfluidic flow injection chemiluminescence system.
    Guan YX; Xu ZR; Dai J; Fang ZL
    Talanta; 2006 Feb; 68(4):1384-9. PubMed ID: 18970476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harvesting and manipulating sweat and interstitial fluid in microfluidic devices.
    Saha T; Mukherjee S; Dickey MD; Velev OD
    Lab Chip; 2024 Feb; 24(5):1244-1265. PubMed ID: 38197332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane-activated microfluidic rotary devices for pumping and mixing.
    Tseng HY; Wang CH; Lin WY; Lee GB
    Biomed Microdevices; 2007 Aug; 9(4):545-54. PubMed ID: 17505888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wearable capillary microfluidics for continuous perspiration sensing.
    Ma B; Chi J; Xu C; Ni Y; Zhao C; Liu H
    Talanta; 2020 May; 212():120786. PubMed ID: 32113549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.