These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 25804815)
1. Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. Bhatnagar-Mathur P; Sunkara S; Bhatnagar-Panwar M; Waliyar F; Sharma KK Plant Sci; 2015 May; 234():119-32. PubMed ID: 25804815 [TBL] [Abstract][Full Text] [Related]
2. Breeding aflatoxin-resistant maize lines using recent advances in technologies - a review. Brown RL; Menkir A; Chen ZY; Bhatnagar D; Yu J; Yao H; Cleveland TE Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013; 30(8):1382-91. PubMed ID: 23859902 [TBL] [Abstract][Full Text] [Related]
3. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels. Gilbert MK; Majumdar R; Rajasekaran K; Chen ZY; Wei Q; Sickler CM; Lebar MD; Cary JW; Frame BR; Wang K Planta; 2018 Jun; 247(6):1465-1473. PubMed ID: 29541880 [TBL] [Abstract][Full Text] [Related]
4. Aspergillus section Flavi community structure in Zambia influences aflatoxin contamination of maize and groundnut. Kachapulula PW; Akello J; Bandyopadhyay R; Cotty PJ Int J Food Microbiol; 2017 Nov; 261():49-56. PubMed ID: 28915412 [TBL] [Abstract][Full Text] [Related]
5. Developing resistance to aflatoxin in maize and cottonseed. Cary JW; Rajasekaran K; Brown RL; Luo M; Chen ZY; Bhatnagar D Toxins (Basel); 2011 Jun; 3(6):678-96. PubMed ID: 22069734 [TBL] [Abstract][Full Text] [Related]
6. Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182. Rajasekaran K; Sayler RJ; Sickler CM; Majumdar R; Jaynes JM; Cary JW Plant Sci; 2018 May; 270():150-156. PubMed ID: 29576068 [TBL] [Abstract][Full Text] [Related]
7. Cultural and Genetic Approaches to Manage Aflatoxin Contamination: Recent Insights Provide Opportunities for Improved Control. Ojiambo PS; Battilani P; Cary JW; Blum BH; Carbone I Phytopathology; 2018 Sep; 108(9):1024-1037. PubMed ID: 29869954 [TBL] [Abstract][Full Text] [Related]
8. Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (Arachis hypogaea L). Wang T; Zhang E; Chen X; Li L; Liang X BMC Plant Biol; 2010 Nov; 10():267. PubMed ID: 21118527 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of Aspergillus flavus Growth and Aflatoxin Production in Transgenic Maize Expressing the α-amylase Inhibitor from Lablab purpureus L. Rajasekaran K; Sayler RJ; Majumdar R; Sickler CM; Cary JW J Vis Exp; 2019 Feb; (144):. PubMed ID: 30829334 [TBL] [Abstract][Full Text] [Related]
10. RNAi-mediated Control of Aflatoxins in Peanut: Method to Analyze Mycotoxin Production and Transgene Expression in the Peanut/Aspergillus Pathosystem. Arias RS; Dang PM; Sobolev VS J Vis Exp; 2015 Dec; (106):e53398. PubMed ID: 26709851 [TBL] [Abstract][Full Text] [Related]
11. Aflatoxin in maize: a review of the early literature from "moldy-corn toxicosis" to the genetics of aflatoxin accumulation resistance. Spencer Smith J; Paul Williams W; Windham GL Mycotoxin Res; 2019 May; 35(2):111-128. PubMed ID: 30729404 [TBL] [Abstract][Full Text] [Related]
12. Efficacy of atoxigenic Aspergillus flavus from southern China as biocontrol agents against aflatoxin contamination in corn and peanuts. Rasheed U; Cotty PJ; Ain QU; Wang Y; Liu B Pestic Biochem Physiol; 2024 May; 201():105887. PubMed ID: 38685218 [TBL] [Abstract][Full Text] [Related]
13. Peanuts that keep aflatoxin at bay: a threshold that matters. Sharma KK; Pothana A; Prasad K; Shah D; Kaur J; Bhatnagar D; Chen ZY; Raruang Y; Cary JW; Rajasekaran K; Sudini HK; Bhatnagar-Mathur P Plant Biotechnol J; 2018 May; 16(5):1024-1033. PubMed ID: 28973784 [TBL] [Abstract][Full Text] [Related]
14. Downregulation of transcription factor aflR in Aspergillus flavus confers reduction to aflatoxin accumulation in transgenic maize with alteration of host plant architecture. Masanga JO; Matheka JM; Omer RA; Ommeh SC; Monda EO; Alakonya AE Plant Cell Rep; 2015 Aug; 34(8):1379-87. PubMed ID: 25895735 [TBL] [Abstract][Full Text] [Related]
15. Comparative transcript profiling of resistant and susceptible peanut post-harvest seeds in response to aflatoxin production by Aspergillus flavus. Wang H; Lei Y; Wan L; Yan L; Lv J; Dai X; Ren X; Guo W; Jiang H; Liao B BMC Plant Biol; 2016 Feb; 16():54. PubMed ID: 26922489 [TBL] [Abstract][Full Text] [Related]
16. Genotypic Regulation of Aflatoxin Accumulation but Not Aspergillus Fungal Growth upon Post-Harvest Infection of Peanut (Arachis hypogaea L.) Seeds. Korani WA; Chu Y; Holbrook C; Clevenger J; Ozias-Akins P Toxins (Basel); 2017 Jul; 9(7):. PubMed ID: 28704974 [TBL] [Abstract][Full Text] [Related]
17. A USA-Africa collaborative strategy for identifying, characterizing, and developing maize germplasm with resistance to aflatoxin contamination. Menkir A; Brown RL; Bandyopadhyay R; Chen ZY; Cleveland TE Mycopathologia; 2006 Sep; 162(3):225-32. PubMed ID: 16944289 [TBL] [Abstract][Full Text] [Related]
18. Performance of Broilers Fed with Maize Colonized by Either Toxigenic or Atoxigenic Strains of Aikore MOS; Ortega-Beltran A; Eruvbetine D; Atehnkeng J; Falade TDO; Cotty PJ; Bandyopadhyay R Toxins (Basel); 2019 Sep; 11(10):. PubMed ID: 31561495 [TBL] [Abstract][Full Text] [Related]
19. Survey of Vietnamese peanuts, corn and soil for the presence of Aspergillus flavus and Aspergillus parasiticus. Tran-Dinh N; Kennedy I; Bui T; Carter D Mycopathologia; 2009 Nov; 168(5):257-68. PubMed ID: 19693687 [TBL] [Abstract][Full Text] [Related]
20. Suppressing aflatoxin biosynthesis is not a breakthrough if not useful. Gressel J; Polturak G Pest Manag Sci; 2018 Jan; 74(1):17-21. PubMed ID: 28762637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]