BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25805124)

  • 1. New insights into the mechanisms of mammalian erythroid chromatin condensation and enucleation.
    Ji P
    Int Rev Cell Mol Biol; 2015; 316():159-82. PubMed ID: 25805124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding terminal erythropoiesis: An update on chromatin condensation, enucleation, and reticulocyte maturation.
    Mei Y; Liu Y; Ji P
    Blood Rev; 2021 Mar; 46():100740. PubMed ID: 32798012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin condensation during terminal erythropoiesis.
    Zhao B; Yang J; Ji P
    Nucleus; 2016 Sep; 7(5):425-429. PubMed ID: 27579498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone deacetylase 2 is required for chromatin condensation and subsequent enucleation of cultured mouse fetal erythroblasts.
    Ji P; Yeh V; Ramirez T; Murata-Hori M; Lodish HF
    Haematologica; 2010 Dec; 95(12):2013-21. PubMed ID: 20823130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of mammalian erythrocytes: chromatin condensation and enucleation.
    Ji P; Murata-Hori M; Lodish HF
    Trends Cell Biol; 2011 Jul; 21(7):409-15. PubMed ID: 21592797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear Condensation during Mouse Erythropoiesis Requires Caspase-3-Mediated Nuclear Opening.
    Zhao B; Mei Y; Schipma MJ; Roth EW; Bleher R; Rappoport JZ; Wickrema A; Yang J; Ji P
    Dev Cell; 2016 Mar; 36(5):498-510. PubMed ID: 26954545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orchestration of late events in erythropoiesis by KLF1/EKLF.
    Gnanapragasam MN; Bieker JJ
    Curr Opin Hematol; 2017 May; 24(3):183-190. PubMed ID: 28157724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of erythroid nuclear opening and histone release in myelodysplastic syndromes.
    Zhao B; Liu H; Mei Y; Liu Y; Han X; Yang J; Wickrema A; Ji P
    Cancer Med; 2019 Mar; 8(3):1169-1174. PubMed ID: 30701702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histone H2A.X phosphorylation and Caspase-Initiated Chromatin Condensation in late-stage erythropoiesis.
    Jeffery NN; Davidson C; Peslak SA; Kingsley PD; Nakamura Y; Palis J; Bulger M
    Epigenetics Chromatin; 2021 Jul; 14(1):37. PubMed ID: 34330317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of actin, myosin, and spectrin during enucleation in erythroid cells of hamster embryo.
    Takano-Ohmuro H; Mukaida M; Morioka K
    Cell Motil Cytoskeleton; 1996; 34(2):95-107. PubMed ID: 8769722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyses of erythropoiesis from embryonic stem cell-CD34
    Wang S; Zhao H; Zhang H; Gao C; Guo X; Chen L; Lobo C; Yazdanbakhsh K; Zhang S; An X
    J Cell Mol Med; 2022 Apr; 26(8):2404-2416. PubMed ID: 35249258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signaling and cytoskeletal requirements in erythroblast enucleation.
    Konstantinidis DG; Pushkaran S; Johnson JF; Cancelas JA; Manganaris S; Harris CE; Williams DA; Zheng Y; Kalfa TA
    Blood; 2012 Jun; 119(25):6118-27. PubMed ID: 22461493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stage-specific expression and localization of MENT, a nuclear protein associated with chromatin condensation in terminally differentiating avian erythroid cells.
    Grigoryev SA; Woodcock CL
    Exp Cell Res; 1993 Jun; 206(2):335-43. PubMed ID: 8500553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Erythroid enucleation: a gateway into a "bloody" world.
    Menon V; Ghaffari S
    Exp Hematol; 2021 Mar; 95():13-22. PubMed ID: 33440185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear substructure reorganization during late-stage erythropoiesis is selective and does not involve caspase cleavage of major nuclear substructural proteins.
    Krauss SW; Lo AJ; Short SA; Koury MJ; Mohandas N; Chasis JA
    Blood; 2005 Sep; 106(6):2200-5. PubMed ID: 15933051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apoptotic mechanisms in the control of erythropoiesis.
    Testa U
    Leukemia; 2004 Jul; 18(7):1176-99. PubMed ID: 15208642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin Condensation and Enucleation in Red Blood Cells: An Open Question.
    Baron MH; Barminko J
    Dev Cell; 2016 Mar; 36(5):481-2. PubMed ID: 26954541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ankyrin and band 3 differentially affect expression of membrane glycoproteins but are not required for erythroblast enucleation.
    Ji P; Lodish HF
    Biochem Biophys Res Commun; 2012 Jan; 417(4):1188-92. PubMed ID: 22226968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rho GTPases in erythroid maturation.
    Kalfa TA; Zheng Y
    Curr Opin Hematol; 2014 May; 21(3):165-71. PubMed ID: 24492678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altering microtubule stability affects microtubule clearance and nuclear extrusion during erythropoiesis.
    Xie S; Yan B; Feng J; Wu Y; He N; Sun L; Zhou J; Li D; Liu M
    J Cell Physiol; 2019 Nov; 234(11):19833-19841. PubMed ID: 31344990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.