BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 25805407)

  • 1. Low-dose energetic protons induce adaptive and bystander effects that protect human cells against DNA damage caused by a subsequent exposure to energetic iron ions.
    Buonanno M; De Toledo SM; Howell RW; Azzam EI
    J Radiat Res; 2015 May; 56(3):502-8. PubMed ID: 25805407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of very low fluences of high-energy protons or iron ions on irradiated and bystander cells.
    Yang H; Magpayo N; Rusek A; Chiang IH; Sivertz M; Held KD
    Radiat Res; 2011 Dec; 176(6):695-705. PubMed ID: 21988573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term consequences of radiation-induced bystander effects depend on radiation quality and dose and correlate with oxidative stress.
    Buonanno M; de Toledo SM; Pain D; Azzam EI
    Radiat Res; 2011 Apr; 175(4):405-15. PubMed ID: 21319986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of heavy ions and energetic protons on normal human fibroblasts.
    Yang H; Anzenberg V; Held KD
    Radiats Biol Radioecol; 2007; 47(3):302-6. PubMed ID: 17867499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic changes in progeny of bystander human fibroblasts after microbeam irradiation with X-rays, protons or carbon ions: the relevance to cancer risk.
    Autsavapromporn N; Plante I; Liu C; Konishi T; Usami N; Funayama T; Azzam EI; Murakami T; Suzuki M
    Int J Radiat Biol; 2015 Jan; 91(1):62-70. PubMed ID: 25084840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The time dependence of bystander responses induced by iron-ion radiation in normal human skin fibroblasts.
    Yang H; Anzenberg V; Held KD
    Radiat Res; 2007 Sep; 168(3):292-8. PubMed ID: 17705636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of the bystander effect and its implications for low-dose exposure.
    Prise KM; Folkard M; Michael BD
    Radiat Prot Dosimetry; 2003; 104(4):347-55. PubMed ID: 14579891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential bystander signaling between radioresistant chondrosarcoma cells and fibroblasts after x-ray, proton, iron ion and carbon ion exposures.
    Wakatsuki M; Magpayo N; Kawamura H; Held KD
    Int J Radiat Oncol Biol Phys; 2012 Sep; 84(1):e103-8. PubMed ID: 22537542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton-HZE-particle sequential dual-beam exposures increase anchorage-independent growth frequencies in primary human fibroblasts.
    Zhou G; Bennett PV; Cutter NC; Sutherland BM
    Radiat Res; 2006 Sep; 166(3):488-94. PubMed ID: 16953667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted and non-targeted effects from combinations of low doses of energetic protons and iron ions in human fibroblasts.
    Yang H; Magpayo N; Held KD
    Int J Radiat Biol; 2011 Mar; 87(3):311-9. PubMed ID: 21158498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Manifestation of the adaptive response and bystander-effect of C3H10T1/2 fibroblasts irradiated by protons and gamma-rays].
    Voskanian KSh; Mitsyn GV; GaevskiÄ­ VN
    Aviakosm Ekolog Med; 2009; 43(6):23-8. PubMed ID: 20169735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nontargeted stressful effects in normal human fibroblast cultures exposed to low fluences of high charge, high energy (HZE) particles: kinetics of biologic responses and significance of secondary radiations.
    Gonon G; Groetz JE; de Toledo SM; Howell RW; Fromm M; Azzam EI
    Radiat Res; 2013 Apr; 179(4):444-57. PubMed ID: 23465079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental techniques for studying bystander effects in vitro by high and low-LET ionising radiation.
    Hill MA; Stevens DL; Kadhim M; Blake-James M; Mill AJ; Goodhead DT
    Radiat Prot Dosimetry; 2006; 122(1-4):260-5. PubMed ID: 17164272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic instability induced in distant progeny of bystander cells depends on the connexins expressed in the irradiated cells.
    de Toledo SM; Buonanno M; Harris AL; Azzam EI
    Int J Radiat Biol; 2017 Oct; 93(10):1182-1194. PubMed ID: 28565963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gap junction communication and the propagation of bystander effects induced by microbeam irradiation in human fibroblast cultures: the impact of radiation quality.
    Autsavapromporn N; Suzuki M; Funayama T; Usami N; Plante I; Yokota Y; Mutou Y; Ikeda H; Kobayashi K; Kobayashi Y; Uchihori Y; Hei TK; Azzam EI; Murakami T
    Radiat Res; 2013 Oct; 180(4):367-75. PubMed ID: 23987132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of the bystander effect on the low-dose hypersensitivity phenomenon.
    Nuta O; Darroudi F
    Radiat Environ Biophys; 2008 Apr; 47(2):265-74. PubMed ID: 18189143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent insights into the biological action of heavy-ion radiation.
    Hamada N
    J Radiat Res; 2009 Jan; 50(1):1-9. PubMed ID: 18838844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological characterization of low-energy ions with high-energy deposition on human cells.
    Saha J; Wilson P; Thieberger P; Lowenstein D; Wang M; Cucinotta FA
    Radiat Res; 2014 Sep; 182(3):282-91. PubMed ID: 25098728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of nonhomologous end joining and homologous recombination in the clonogenic bystander effects of mammalian cells after exposure to counted 10 MeV protons and 4.5 MeV alpha-particles of the PTB microbeam.
    Frankenberg D; Greif KD; Beverung W; Langner F; Giesen U
    Radiat Environ Biophys; 2008 Nov; 47(4):431-8. PubMed ID: 18688633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Split-dose exposures versus dual ion exposure in human cell neoplastic transformation.
    Bennett PV; Cutter NC; Sutherland BM
    Radiat Environ Biophys; 2007 Jun; 46(2):119-23. PubMed ID: 17256176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.