These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 25805665)
1. Hierarchically biomimetic scaffold of a collagen-mesoporous bioactive glass nanofiber composite for bone tissue engineering. Hsu FY; Lu MR; Weng RC; Lin HM Biomed Mater; 2015 Mar; 10(2):025007. PubMed ID: 25805665 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. Lu HH; El-Amin SF; Scott KD; Laurencin CT J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560 [TBL] [Abstract][Full Text] [Related]
3. Poly-3-hydroxybutyrate-co-3-hydroxyvalerate containing scaffolds and their integration with osteoblasts as a model for bone tissue engineering. Zhang S; Prabhakaran MP; Qin X; Ramakrishna S J Biomater Appl; 2015 May; 29(10):1394-406. PubMed ID: 25592285 [TBL] [Abstract][Full Text] [Related]
4. Development of novel silk fibroin/polyvinyl alcohol/sol-gel bioactive glass composite matrix by modified layer by layer electrospinning method for bone tissue construct generation. Singh BN; Pramanik K Biofabrication; 2017 Mar; 9(1):015028. PubMed ID: 28332482 [TBL] [Abstract][Full Text] [Related]
5. Hybrid hydroxyapatite nanoparticles-loaded PCL/GE blend fibers for bone tissue engineering. Ba Linh NT; Min YK; Lee BT J Biomater Sci Polym Ed; 2013; 24(5):520-38. PubMed ID: 23565865 [TBL] [Abstract][Full Text] [Related]
6. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics. Yun HS; Kim SH; Khang D; Choi J; Kim HH; Kang M Int J Nanomedicine; 2011; 6():2521-31. PubMed ID: 22072886 [TBL] [Abstract][Full Text] [Related]
7. A novel combination of nano-scaffolds with micro-scaffolds to mimic extracellularmatrices improve osteogenesis. Xia Y; Peng SS; Xie LZ; Lian XJ; Zhang XJ; Cui H; Song TX; Zhang FM; Gu N; Cui FZ J Biomater Appl; 2014 Jul; 29(1):59-71. PubMed ID: 24287982 [TBL] [Abstract][Full Text] [Related]
8. Bioactivity and bone healing properties of biomimetic porous composite scaffold: in vitro and in vivo studies. Veronesi F; Giavaresi G; Guarino V; Raucci MG; Sandri M; Tampieri A; Ambrosio L; Fini M J Biomed Mater Res A; 2015 Sep; 103(9):2932-41. PubMed ID: 25689266 [TBL] [Abstract][Full Text] [Related]
9. A Biomimetic Material with a High Bio-responsibility for Bone Reconstruction and Tissue Engineering. Chen X; Meng Y; Wang Y; Du C; Yang C J Biomater Sci Polym Ed; 2011; 22(1-3):153-63. PubMed ID: 20546681 [TBL] [Abstract][Full Text] [Related]
10. Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration. Singh RK; Jin GZ; Mahapatra C; Patel KD; Chrzanowski W; Kim HW ACS Appl Mater Interfaces; 2015 Apr; 7(15):8088-98. PubMed ID: 25768431 [TBL] [Abstract][Full Text] [Related]
11. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold. Baylan N; Bhat S; Ditto M; Lawrence JG; Lecka-Czernik B; Yildirim-Ayan E Biomed Mater; 2013 Aug; 8(4):045011. PubMed ID: 23804651 [TBL] [Abstract][Full Text] [Related]
12. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering. Yang SY; Hwang TH; Che L; Oh JS; Ha Y; Ryu W Biomed Mater; 2015 Jun; 10(3):035011. PubMed ID: 26106926 [TBL] [Abstract][Full Text] [Related]
13. Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Li L; Zhou G; Wang Y; Yang G; Ding S; Zhou S Biomaterials; 2015 Jan; 37():218-29. PubMed ID: 25453952 [TBL] [Abstract][Full Text] [Related]
14. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. Rodrigues MT; Martins A; Dias IR; Viegas CA; Neves NM; Gomes ME; Reis RL J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140 [TBL] [Abstract][Full Text] [Related]
15. Preparation of a biomimetic composite scaffold from gelatin/collagen and bioactive glass fibers for bone tissue engineering. Sharifi E; Azami M; Kajbafzadeh AM; Moztarzadeh F; Faridi-Majidi R; Shamousi A; Karimi R; Ai J Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():533-541. PubMed ID: 26652405 [TBL] [Abstract][Full Text] [Related]
16. Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration. Ren J; Blackwood KA; Doustgani A; Poh PP; Steck R; Stevens MM; Woodruff MA J Biomed Mater Res A; 2014 Sep; 102(9):3140-53. PubMed ID: 24133006 [TBL] [Abstract][Full Text] [Related]
17. Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Chesnutt BM; Yuan Y; Buddington K; Haggard WO; Bumgardner JD Tissue Eng Part A; 2009 Sep; 15(9):2571-9. PubMed ID: 19309240 [TBL] [Abstract][Full Text] [Related]
18. Efficient bone regeneration induced by bone morphogenetic protein-2 released from apatite-coated collagen scaffolds. Yang HS; La WG; Park J; Kim CS; Im GI; Kim BS J Biomater Sci Polym Ed; 2012; 23(13):1659-71. PubMed ID: 21888760 [TBL] [Abstract][Full Text] [Related]
19. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)-bioglass/chitosan-collagen composite scaffolds: a bone tissue engineering applications. Pon-On W; Charoenphandhu N; Teerapornpuntakit J; Thongbunchoo J; Krishnamra N; Tang IM Mater Sci Eng C Mater Biol Appl; 2014 May; 38():63-72. PubMed ID: 24656353 [TBL] [Abstract][Full Text] [Related]