BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 25805860)

  • 1. SHAPE Selection (SHAPES) enrich for RNA structure signal in SHAPE sequencing-based probing data.
    Poulsen LD; Kielpinski LJ; Salama SR; Krogh A; Vinther J
    RNA; 2015 May; 21(5):1042-52. PubMed ID: 25805860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequencing-based analysis of RNA structures in living cells with 2A3 via SHAPE-MaP.
    Incarnato D
    Methods Enzymol; 2023; 691():153-181. PubMed ID: 37914444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Analysis Reveals Furoyl in Vivo Selective Hydroxyl Acylation Analyzed by Primer Extension Reagents Form Stable Ribosyl Ester Adducts.
    Chan D; Feng C; Zhen Y; Flynn RA; Spitale RC
    Biochemistry; 2017 Apr; 56(13):1811-1814. PubMed ID: 28319368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel SHAPE reagent enables the analysis of RNA structure in living cells with unprecedented accuracy.
    Marinus T; Fessler AB; Ogle CA; Incarnato D
    Nucleic Acids Res; 2021 Apr; 49(6):e34. PubMed ID: 33398343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lead-seq: transcriptome-wide structure probing in vivo using lead(II) ions.
    Twittenhoff C; Brandenburg VB; Righetti F; Nuss AM; Mosig A; Dersch P; Narberhaus F
    Nucleic Acids Res; 2020 Jul; 48(12):e71. PubMed ID: 32463449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical and Enzymatic Probing of Viral RNAs: From Infancy to Maturity and Beyond.
    Gilmer O; Quignon E; Jousset AC; Paillart JC; Marquet R; Vivet-Boudou V
    Viruses; 2021 Sep; 13(10):. PubMed ID: 34696322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Native Purification and Analysis of Long RNAs.
    Chillón I; Marcia M; Legiewicz M; Liu F; Somarowthu S; Pyle AM
    Methods Enzymol; 2015; 558():3-37. PubMed ID: 26068736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic SHAPE/Single-Molecule Deconvolution of RNA Conformation under Physiological Conditions.
    Vieweger M; Nesbitt DJ
    Biophys J; 2018 Apr; 114(8):1762-1775. PubMed ID: 29694857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequencing and Structure Probing of Long RNAs Using MarathonRT: A Next-Generation Reverse Transcriptase.
    Guo LT; Adams RL; Wan H; Huston NC; Potapova O; Olson S; Gallardo CM; Graveley BR; Torbett BE; Pyle AM
    J Mol Biol; 2020 May; 432(10):3338-3352. PubMed ID: 32259542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Mapping of Higher-Order RNA Interactions by SHAPE-JuMP.
    Christy TW; Giannetti CA; Houlihan G; Smola MJ; Rice GM; Wang J; Dokholyan NV; Laederach A; Holliger P; Weeks KM
    Biochemistry; 2021 Jun; 60(25):1971-1982. PubMed ID: 34121404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new reagent for in vivo structure probing of RNA G and U residues that improves RNA structure prediction alone and combined with DMS.
    Douds CA; Babitzke P; Bevilacqua PC
    RNA; 2024 Jun; 30(7):901-919. PubMed ID: 38670632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP).
    Siegfried NA; Busan S; Rice GM; Nelson JA; Weeks KM
    Nat Methods; 2014 Sep; 11(9):959-65. PubMed ID: 25028896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RiboCAT: a new capillary electrophoresis data analysis tool for nucleic acid probing.
    Cantara WA; Hatterschide J; Wu W; Musier-Forsyth K
    RNA; 2017 Feb; 23(2):240-249. PubMed ID: 27821510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. fSHAPE, fSHAPE-eCLIP, and SHAPE-eCLIP probe transcript regions that interact with specific proteins.
    Corley M; Flynn RA; Blue SM; Yee BA; Chang HY; Yeo GW
    STAR Protoc; 2021 Sep; 2(3):100762. PubMed ID: 34485935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic RNA labeling for probing RNA dynamics in bacteria.
    Meng L; Guo Y; Tang Q; Huang R; Xie Y; Chen X
    Nucleic Acids Res; 2020 Dec; 48(22):12566-12576. PubMed ID: 33245763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical Approaches To Analyzing RNA Structure Transcriptome-Wide.
    England WE; Garfio CM; Spitale RC
    Chembiochem; 2021 Apr; 22(7):1114-1121. PubMed ID: 32737940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2'-OH as a universal handle for studying intracellular RNAs.
    Xiao L; Fang L; Kool ET
    Cell Chem Biol; 2024 Jan; 31(1):110-124. PubMed ID: 37992716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical and computer probing of RNA structure.
    Kolchanov NA; Titov II; Vlassova IE; Vlassov VV
    Prog Nucleic Acid Res Mol Biol; 1996; 53():131-96. PubMed ID: 8650302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyacetate and Polycarbonate RNA: Acylating Reagents and Properties.
    Habibian M; Velema WA; Kietrys AM; Onishi Y; Kool ET
    Org Lett; 2019 Jul; 21(14):5413-5416. PubMed ID: 31268332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress and challenges for chemical probing of RNA structure inside living cells.
    Kubota M; Tran C; Spitale RC
    Nat Chem Biol; 2015 Dec; 11(12):933-41. PubMed ID: 26575240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.