These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 25806468)

  • 21. An efficient, modular approach for the synthesis of (+)-strictifolione and a related natural product.
    Jayasinghe S; Venukadasula PK; Hanson PR
    Org Lett; 2014 Jan; 16(1):122-5. PubMed ID: 24294936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosynthesis and Total Synthesis of Pyrronazol B: a Secondary Metabolite from Nannocystis pusilla.
    Witte SNR; Hug JJ; Géraldy MNE; Müller R; Kalesse M
    Chemistry; 2017 Nov; 23(63):15917-15921. PubMed ID: 28944573
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and determination of absolute configuration of α-pyrones isolated from Penicillium corylophilum.
    Yadav JS; Ganganna B; Dutta P; Singarapu KK
    J Org Chem; 2014 Nov; 79(22):10762-71. PubMed ID: 25337961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal-Free Brønsted Acid-Catalyzed Rearrangement of δ-Hydroxyalkynones to 2,3-Dihydro-4 H-pyran-4-ones: Total Synthesis of Obolactone and a Catechol Pyran Isolated from Plectranthus sylvestris.
    Gholap SP; Jangid D; Fernandes RA
    J Org Chem; 2019 Mar; 84(6):3537-3551. PubMed ID: 30793599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Asymmetric Total Syntheses of Two 3-Acyl-5,6- dihydro-2H-pyrones: (R)-Podoblastin-S and (R)- Lachnelluloic Acid with Verification of the Absolute Configuration of (-)-Lachnelluloic Acid.
    Fujiwara T; Tsutsumi T; Nakata K; Nakatsuji H; Tanabe Y
    Molecules; 2017 Jan; 22(1):. PubMed ID: 28045445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mining the tetraene manifold: total synthesis of complex pyrones from Placobranchus ocellatus.
    Miller AK; Trauner D
    Angew Chem Int Ed Engl; 2005 Jul; 44(29):4602-6. PubMed ID: 15981289
    [No Abstract]   [Full Text] [Related]  

  • 27. Enantioselective total synthesis of (-)-candelalides A, B and C: potential Kv1.3 blocking immunosuppressive agents.
    Oguchi T; Watanabe K; Ohkubo K; Abe H; Katoh T
    Chemistry; 2009; 15(12):2826-45. PubMed ID: 19191240
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Total synthesis of fostriecin: via a regio- and stereoselective polyene hydration, oxidation, and hydroboration sequence.
    Gao D; O'Doherty GA
    Org Lett; 2010 Sep; 12(17):3752-5. PubMed ID: 20687585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stereoselective synthesis of cyercene A and the placidenes.
    Liang G; Miller AK; Trauner D
    Org Lett; 2005 Mar; 7(5):819-21. PubMed ID: 15727449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stereochemical assignment of the C1-C6 fragment of psymberin by synthesis and natural product degradation.
    Green ME; Rech JC; Floreancig PE
    Org Lett; 2005 Sep; 7(19):4117-20. PubMed ID: 16146366
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biomimetic synthesis of pyrone-derived natural products: exploring chemical pathways from a unique polyketide precursor.
    Eade SJ; Walter MW; Byrne C; Odell B; Rodriguez R; Baldwin JE; Adlington RM; Moses JE
    J Org Chem; 2008 Jul; 73(13):4830-9. PubMed ID: 18517253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phosphate tethers in natural product synthesis.
    Hanson PR; Jayasinghe S; Maitra S; Markley JL
    Top Curr Chem; 2015; 361():253-71. PubMed ID: 25518970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and SAR of Lehualide B: a marine-derived natural product with potent anti-multiple myeloma activity.
    Jeso V; Yang C; Cameron MD; Cleveland JL; Micalizio GC
    ACS Chem Biol; 2013; 8(6):1241-52. PubMed ID: 23547759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Asymmetric total synthesis of nigerone.
    Divirgilio ES; Dugan EC; Mulrooney CA; Kozlowski MC
    Org Lett; 2007 Feb; 9(3):385-8. PubMed ID: 17249768
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Secondary Metabolites from Polar Organisms.
    Tian Y; Li YL; Zhao FC
    Mar Drugs; 2017 Feb; 15(3):. PubMed ID: 28241505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transition-Metal-Catalyzed Transformations for the Synthesis of Marine Drugs.
    Parte LG; Fernández S; Sandonís E; Guerra J; López E
    Mar Drugs; 2024 May; 22(6):. PubMed ID: 38921564
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Approach to the functionalized cyclopentane core of marine prostanoids by applying a radical cyclization of β-disubstituted acrylates.
    Hong LP; Chak C; Donner CD
    Org Biomol Chem; 2013 Sep; 11(36):6186-94. PubMed ID: 23928860
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cold-water marine natural products, 2006 to 2016.
    Soldatou S; Baker BJ
    Nat Prod Rep; 2017 Jun; 34(6):585-626. PubMed ID: 28322384
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 1,4-Pentenyne as a five-carbon synthon for efficient and selective syntheses of natural products containing 2,4-dimethyl-1-penten-1,5-ylidene and related moieties by means of Zr-catalyzed carboalumination of alkynes and alkenes.
    Zhu G; Negishi E
    Chemistry; 2008; 14(1):311-8. PubMed ID: 17969219
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Marine natural products: a new wave of drugs?
    Montaser R; Luesch H
    Future Med Chem; 2011 Sep; 3(12):1475-89. PubMed ID: 21882941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.