These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 25806594)

  • 1. Sulfinato iron(III) complex for electrocatalytic proton reduction.
    Cavell AC; Hartley CL; Liu D; Tribble CS; McNamara WR
    Inorg Chem; 2015 Apr; 54(7):3325-30. PubMed ID: 25806594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen evolution catalyzed by an iron polypyridyl complex in aqueous solutions.
    Connor GP; Mayer KJ; Tribble CS; McNamara WR
    Inorg Chem; 2014 Jun; 53(11):5408-10. PubMed ID: 24848899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cobalt-dithiolene complex for the photocatalytic and electrocatalytic reduction of protons.
    McNamara WR; Han Z; Alperin PJ; Brennessel WW; Holland PL; Eisenberg R
    J Am Chem Soc; 2011 Oct; 133(39):15368-71. PubMed ID: 21863808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of electrocatalytic hydrogen production by a di-iron model of iron-iron hydrogenase: a density functional theory study of proton dissociation constants and electrode reduction potentials.
    Surawatanawong P; Tye JW; Darensbourg MY; Hall MB
    Dalton Trans; 2010 Mar; 39(12):3093-104. PubMed ID: 20221544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrocatalytic oxygen reduction by iron tetra-arylporphyrins bearing pendant proton relays.
    Carver CT; Matson BD; Mayer JM
    J Am Chem Soc; 2012 Mar; 134(12):5444-7. PubMed ID: 22394189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermochemical and mechanistic studies of electrocatalytic hydrogen production by cobalt complexes containing pendant amines.
    Wiedner ES; Appel AM; DuBois DL; Bullock RM
    Inorg Chem; 2013 Dec; 52(24):14391-403. PubMed ID: 24261463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocatalytic water oxidation by a monomeric amidate-ligated Fe(III)-aqua complex.
    Coggins MK; Zhang MT; Vannucci AK; Dares CJ; Meyer TJ
    J Am Chem Soc; 2014 Apr; 136(15):5531-4. PubMed ID: 24670044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photo- and electrocatalytic H2 production by new first-row transition-metal complexes based on an aminopyridine pentadentate ligand.
    Call A; Codolà Z; Acuña-Parés F; Lloret-Fillol J
    Chemistry; 2014 May; 20(20):6171-83. PubMed ID: 24692261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen evolution by a metal-free electrocatalyst.
    Zheng Y; Jiao Y; Zhu Y; Li LH; Han Y; Chen Y; Du A; Jaroniec M; Qiao SZ
    Nat Commun; 2014 Apr; 5():3783. PubMed ID: 24769657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrocatalytic Dioxygen Reduction by Carbon Electrodes Noncovalently Modified with Iron Porphyrin Complexes: Enhancements from a Single Proton Relay.
    Sinha S; Aaron MS; Blagojevic J; Warren JJ
    Chemistry; 2015 Dec; 21(50):18072-5. PubMed ID: 26459272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Fe(IV)-oxo intermediates in stoichiometric and catalytic oxidations mediated by iron pyridine-azamacrocycles.
    Ye W; Ho DM; Friedle S; Palluccio TD; Rybak-Akimova EV
    Inorg Chem; 2012 May; 51(9):5006-21. PubMed ID: 22534174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation.
    Tang D; Liu J; Wu X; Liu R; Han X; Han Y; Huang H; Liu Y; Kang Z
    ACS Appl Mater Interfaces; 2014 May; 6(10):7918-25. PubMed ID: 24735390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation.
    Gong M; Li Y; Wang H; Liang Y; Wu JZ; Zhou J; Wang J; Regier T; Wei F; Dai H
    J Am Chem Soc; 2013 Jun; 135(23):8452-5. PubMed ID: 23701670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrocatalytic hydrogen generation by a trithiolato-bridged dimanganese hexacarbonyl anion with a turnover frequency exceeding 40,000 s(-1).
    Hou K; Poh HT; Fan WY
    Chem Commun (Camb); 2014 Jun; 50(50):6630-2. PubMed ID: 24817512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrocatalytic proton reduction by dithiolate-bridged diiron carbonyl complexes: a connection to the H-cluster?
    Borg SJ; Bondin MI; Best SP; Razavet M; Liu X; Pickett CJ
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):3-6. PubMed ID: 15667249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrogen evolution catalyzed by a cobalt complex containing an asymmetric Schiff-base ligand.
    Armstrong JE; Crossland PM; Frank MA; Van Dongen MJ; McNamara WR
    Dalton Trans; 2016 Apr; 45(13):5430-3. PubMed ID: 26948148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density functional study of the thermodynamics of hydrogen production by tetrairon hexathiolate, Fe4[MeC(CH2S)3]2(CO)8, a hydrogenase model.
    Surawatanawong P; Hall MB
    Inorg Chem; 2010 Jun; 49(12):5737-47. PubMed ID: 20481518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attaining control by design over the hydrolytic stability of Fe-TAML oxidation catalysts.
    Polshin V; Popescu DL; Fischer A; Chanda A; Horner DC; Beach ES; Henry J; Qian YL; Horwitz CP; Lente G; Fabian I; Münck E; Bominaar EL; Ryabov AD; Collins TJ
    J Am Chem Soc; 2008 Apr; 130(13):4497-506. PubMed ID: 18335938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct Proton and Water Reduction Behavior with a Cobalt(III) Electrocatalyst Based on Pentadentate Oximes.
    Basu D; Mazumder S; Shi X; Staples RJ; Schlegel HB; Verani CN
    Angew Chem Int Ed Engl; 2015 Jun; 54(24):7139-43. PubMed ID: 25914328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pt-Pd alloy nanoparticle-decorated carbon nanotubes: a durable and methanol tolerant oxygen reduction electrocatalyst.
    Ghosh S; Sahu RK; Raj CR
    Nanotechnology; 2012 Sep; 23(38):385602. PubMed ID: 22948751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.