These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 25806594)
21. Electrocatalytic reduction of ROOH by iron porphyrins. Collman JP; Kaplun M; Sunderland CJ; Boulatov R J Am Chem Soc; 2004 Sep; 126(36):11166-7. PubMed ID: 15355094 [TBL] [Abstract][Full Text] [Related]
22. The hydrophilic phosphatriazaadamantane ligand in the development of H2 production electrocatalysts: iron hydrogenase model complexes. Mejia-Rodriguez R; Chong D; Reibenspies JH; Soriaga MP; Darensbourg MY J Am Chem Soc; 2004 Sep; 126(38):12004-14. PubMed ID: 15382935 [TBL] [Abstract][Full Text] [Related]
23. Cobalt Schiff-base complexes for electrocatalytic hydrogen generation. DiRisio RJ; Armstrong JE; Frank MA; Lake WR; McNamara WR Dalton Trans; 2017 Aug; 46(31):10418-10425. PubMed ID: 28745763 [TBL] [Abstract][Full Text] [Related]
24. Controlling proton movement: electrocatalytic oxidation of hydrogen by a nickel(II) complex containing proton relays in the second and outer coordination spheres. Das P; Ho MH; O'Hagan M; Shaw WJ; Bullock RM; Raugei S; Helm ML Dalton Trans; 2014 Feb; 43(7):2744-54. PubMed ID: 24306451 [TBL] [Abstract][Full Text] [Related]
25. Electrocatalytic Dihydrogen Production by an Earth-Abundant Manganese Bipyridine Catalyst. Sampson MD; Kubiak CP Inorg Chem; 2015 Jul; 54(14):6674-6. PubMed ID: 26125125 [TBL] [Abstract][Full Text] [Related]
26. Oxygen reduction reaction catalysts prepared from acetonitrile pyrolysis over alumina-supported metal particles. Matter PH; Wang E; Arias M; Biddinger EJ; Ozkan US J Phys Chem B; 2006 Sep; 110(37):18374-84. PubMed ID: 16970461 [TBL] [Abstract][Full Text] [Related]
27. Reaction of oxygen with 6-hydroxydopamine catalyzed by Cu, Fe, Mn, and V complexes: identification of a thermodynamic window for effective metal catalysis. Bandy B; Walter PB; Moon J; Davison AJ Arch Biochem Biophys; 2001 May; 389(1):22-30. PubMed ID: 11370668 [TBL] [Abstract][Full Text] [Related]
28. A PEGylated Tin Porphyrin Complex for Electrocatalytic Proton Reduction: Mechanistic Insights into Main-Group-Element Catalysis. Chaturvedi A; McCarver GA; Sinha S; Hix EG; Vogiatzis KD; Jiang J Angew Chem Int Ed Engl; 2022 Aug; 61(34):e202206325. PubMed ID: 35727682 [TBL] [Abstract][Full Text] [Related]
29. Metal-Assisted Ligand-Centered Electrocatalytic Hydrogen Evolution upon Reduction of a Bis(thiosemicarbazonato)Cu(II) Complex. Haddad AZ; Cronin SP; Mashuta MS; Buchanan RM; Grapperhaus CA Inorg Chem; 2017 Sep; 56(18):11254-11265. PubMed ID: 28857556 [TBL] [Abstract][Full Text] [Related]
30. ortho-Hydroxylation of aromatic acids by a non-heme Fe(V)=O species: how important is the ligand design? Ansari A; Rajaraman G Phys Chem Chem Phys; 2014 Jul; 16(28):14601-13. PubMed ID: 24812659 [TBL] [Abstract][Full Text] [Related]
31. High resolution crystal structures of the catalytic domain of human phenylalanine hydroxylase in its catalytically active Fe(II) form and binary complex with tetrahydrobiopterin. Andersen OA; Flatmark T; Hough E J Mol Biol; 2001 Nov; 314(2):279-91. PubMed ID: 11718561 [TBL] [Abstract][Full Text] [Related]
33. Modeling [Fe-Fe] hydrogenase: evidence for bridging carbonyl and distal iron coordination vacancy in an electrocatalytically competent proton reduction by an iron thiolate assembly that operates through Fe(0)-Fe(II) levels. Cheah MH; Tard C; Borg SJ; Liu X; Ibrahim SK; Pickett CJ; Best SP J Am Chem Soc; 2007 Sep; 129(36):11085-92. PubMed ID: 17705475 [TBL] [Abstract][Full Text] [Related]
34. A binuclear iron-thiolate catalyst for electrochemical hydrogen production in aqueous micellar solution. Quentel F; Passard G; Gloaguen F Chemistry; 2012 Oct; 18(42):13473-9. PubMed ID: 22968711 [TBL] [Abstract][Full Text] [Related]
35. Myoglobin as an efficient electrocatalyst for nitromethane reduction. Boutros J; Bayachou M Inorg Chem; 2004 Jun; 43(13):3847-53. PubMed ID: 15206865 [TBL] [Abstract][Full Text] [Related]
36. Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Liu Q; Tian J; Cui W; Jiang P; Cheng N; Asiri AM; Sun X Angew Chem Int Ed Engl; 2014 Jun; 53(26):6710-4. PubMed ID: 24845625 [TBL] [Abstract][Full Text] [Related]
37. A QM/MM investigation of the activation and catalytic mechanism of Fe-only hydrogenases. Greco C; Bruschi M; De Gioia L; Ryde U Inorg Chem; 2007 Jul; 46(15):5911-21. PubMed ID: 17602468 [TBL] [Abstract][Full Text] [Related]
38. A nickel complex of a conjugated bis-dithiocarbazate Schiff base for the photocatalytic production of hydrogen. Wise CF; Liu D; Mayer KJ; Crossland PM; Hartley CL; McNamara WR Dalton Trans; 2015 Aug; 44(32):14265-71. PubMed ID: 26194481 [TBL] [Abstract][Full Text] [Related]
39. Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. Hu X; Brunschwig BS; Peters JC J Am Chem Soc; 2007 Jul; 129(29):8988-98. PubMed ID: 17602556 [TBL] [Abstract][Full Text] [Related]
40. Excavated Fe-N-C sites for enhanced electrocatalytic activity in the oxygen reduction reaction. Jeong B; Shin D; Jeon H; Ocon JD; Mun BS; Baik J; Shin HJ; Lee J ChemSusChem; 2014 May; 7(5):1289-94. PubMed ID: 24700786 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]