These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Adaptive radiation of Pseudomonas fluorescens SBW25 in experimental microcosms provides an understanding of the evolutionary ecology and molecular biology of A-L interface biofilm formation. Koza A; Kusmierska A; McLaughlin K; Moshynets O; Spiers AJ FEMS Microbiol Lett; 2017 Jul; 364(12):. PubMed ID: 28535292 [TBL] [Abstract][Full Text] [Related]
8. Evolution of Fitness Trade-Offs in Locally Adapted Populations of Pseudomonas fluorescens. Schick A; Bailey SF; Kassen R Am Nat; 2015 Oct; 186 Suppl 1():S48-59. PubMed ID: 26656216 [TBL] [Abstract][Full Text] [Related]
9. Adaptive divergence in experimental populations of Pseudomonas fluorescens. V. Insight into the niche specialist fuzzy spreader compels revision of the model Pseudomonas radiation. Ferguson GC; Bertels F; Rainey PB Genetics; 2013 Dec; 195(4):1319-35. PubMed ID: 24077305 [TBL] [Abstract][Full Text] [Related]
10. The effect of selection environment on the probability of parallel evolution. Bailey SF; Rodrigue N; Kassen R Mol Biol Evol; 2015 Jun; 32(6):1436-48. PubMed ID: 25761765 [TBL] [Abstract][Full Text] [Related]
11. The evolution of biofilm-forming Wrinkly Spreaders in static microcosms and drip-fed columns selects for subtle differences in wrinkleality and fitness. Udall YC; Deeni Y; Hapca SM; Raikes D; Spiers AJ FEMS Microbiol Ecol; 2015 Jun; 91(6):. PubMed ID: 26002784 [TBL] [Abstract][Full Text] [Related]
12. Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness. Spiers AJ; Kahn SG; Bohannon J; Travisano M; Rainey PB Genetics; 2002 May; 161(1):33-46. PubMed ID: 12019221 [TBL] [Abstract][Full Text] [Related]
13. Adaptive landscapes in evolving populations of Pseudomonas fluorescens. Melnyk AH; Kassen R Evolution; 2011 Nov; 65(11):3048-59. PubMed ID: 22023573 [TBL] [Abstract][Full Text] [Related]
14. Penetrating the air-liquid interface is the key to colonization and wrinkly spreader fitness. Jerdan R; Kuśmierska A; Petric M; Spiers AJ Microbiology (Reading); 2019 Oct; 165(10):1061-1074. PubMed ID: 31436522 [TBL] [Abstract][Full Text] [Related]
15. Adaptive divergence in experimental populations of Pseudomonas fluorescens. II. Role of the GGDEF regulator WspR in evolution and development of the wrinkly spreader phenotype. Goymer P; Kahn SG; Malone JG; Gehrig SM; Spiers AJ; Rainey PB Genetics; 2006 Jun; 173(2):515-26. PubMed ID: 16624907 [TBL] [Abstract][Full Text] [Related]
16. Wrinkly-Spreader fitness in the two-dimensional agar plate microcosm: maladaptation, compensation and ecological success. Spiers AJ PLoS One; 2007 Aug; 2(8):e740. PubMed ID: 17710140 [TBL] [Abstract][Full Text] [Related]
17. Rapid evolution of adaptive niche construction in experimental microbial populations. Callahan BJ; Fukami T; Fisher DS Evolution; 2014 Nov; 68(11):3307-16. PubMed ID: 25138718 [TBL] [Abstract][Full Text] [Related]
18. Adaptive evolution by spontaneous domain fusion and protein relocalization. Farr AD; Remigi P; Rainey PB Nat Ecol Evol; 2017 Oct; 1(10):1562-1568. PubMed ID: 29185504 [TBL] [Abstract][Full Text] [Related]
19. Causes and Biophysical Consequences of Cellulose Production by Pseudomonas fluorescens SBW25 at the Air-Liquid Interface. Ardré M; Dufour D; Rainey PB J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 31085696 [TBL] [Abstract][Full Text] [Related]
20. Extremely fast amelioration of plasmid fitness costs by multiple functionally diverse pathways. Hall JPJ; Wright RCT; Guymer D; Harrison E; Brockhurst MA Microbiology (Reading); 2020 Jan; 166(1):56-62. PubMed ID: 31613206 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]