These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 25806999)

  • 1. Involvement of Reactive Oxygen Species and Mitochondrial Proteins in Biophoton Emission in Roots of Soybean Plants under Flooding Stress.
    Kamal AH; Komatsu S
    J Proteome Res; 2015 May; 14(5):2219-36. PubMed ID: 25806999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteins involved in biophoton emission and flooding-stress responses in soybean under light and dark conditions.
    Kamal AH; Komatsu S
    Mol Biol Rep; 2016 Feb; 43(2):73-89. PubMed ID: 26754663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative proteomics reveals that peroxidases play key roles in post-flooding recovery in soybean roots.
    Khan MN; Sakata K; Hiraga S; Komatsu S
    J Proteome Res; 2014 Dec; 13(12):5812-28. PubMed ID: 25284625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Jasmonic acid induced protein response to biophoton emissions and flooding stress in soybean.
    Kamal AHM; Komatsu S
    J Proteomics; 2016 Feb; 133():33-47. PubMed ID: 26655678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphoproteomics reveals the effect of ethylene in soybean root under flooding stress.
    Yin X; Sakata K; Komatsu S
    J Proteome Res; 2014 Dec; 13(12):5618-34. PubMed ID: 25316100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organ-specific proteomics analysis for identification of response mechanism in soybean seedlings under flooding stress.
    Khatoon A; Rehman S; Hiraga S; Makino T; Komatsu S
    J Proteomics; 2012 Oct; 75(18):5706-23. PubMed ID: 22850269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive analysis of mitochondria in roots and hypocotyls of soybean under flooding stress using proteomics and metabolomics techniques.
    Komatsu S; Yamamoto A; Nakamura T; Nouri MZ; Nanjo Y; Nishizawa K; Furukawa K
    J Proteome Res; 2011 Sep; 10(9):3993-4004. PubMed ID: 21766870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic analysis of the flooding tolerance mechanism in mutant soybean.
    Komatsu S; Nanjo Y; Nishimura M
    J Proteomics; 2013 Feb; 79():231-50. PubMed ID: 23313221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive analysis of the soybean genes and proteins expressed under flooding stress using transcriptome and proteome techniques.
    Komatsu S; Yamamoto R; Nanjo Y; Mikami Y; Yunokawa H; Sakata K
    J Proteome Res; 2009 Oct; 8(10):4766-78. PubMed ID: 19658438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding.
    Komatsu S; Han C; Nanjo Y; Altaf-Un-Nahar M; Wang K; He D; Yang P
    J Proteome Res; 2013 Nov; 12(11):4769-84. PubMed ID: 23808807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of proteins in soybean roots under flooding and drought stresses.
    Oh M; Komatsu S
    J Proteomics; 2015 Jan; 114():161-81. PubMed ID: 25464361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic and metabolomic analyses of soybean root tips under flooding stress.
    Komatsu S; Nakamura T; Sugimoto Y; Sakamoto K
    Protein Pept Lett; 2014; 21(9):865-84. PubMed ID: 24654851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative proteomics analysis of differentially expressed proteins in soybean cell wall during flooding stress.
    Komatsu S; Kobayashi Y; Nishizawa K; Nanjo Y; Furukawa K
    Amino Acids; 2010 Nov; 39(5):1435-49. PubMed ID: 20458513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic analysis of soybean hypocotyl during recovery after flooding stress.
    Khan MN; Sakata K; Komatsu S
    J Proteomics; 2015 May; 121():15-27. PubMed ID: 25818724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of ascorbate peroxidase in soybean under flooding and drought stresses.
    Kausar R; Hossain Z; Makino T; Komatsu S
    Mol Biol Rep; 2012 Dec; 39(12):10573-9. PubMed ID: 23053956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of flooding stress responsible cascades in root and hypocotyl of soybean using proteome analysis.
    Komatsu S; Sugimoto T; Hoshino T; Nanjo Y; Furukawa K
    Amino Acids; 2010 Mar; 38(3):729-38. PubMed ID: 19333721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses.
    Wang X; Oh M; Sakata K; Komatsu S
    J Proteomics; 2016 Jan; 130():42-55. PubMed ID: 26376099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the Response of Soybean Mitochondrial Proteins to Various Sizes of Aluminum Oxide Nanoparticles under Flooding Stress.
    Mustafa G; Komatsu S
    J Proteome Res; 2016 Dec; 15(12):4464-4475. PubMed ID: 27780359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of indicator proteins associated with flooding injury in soybean seedlings using label-free quantitative proteomics.
    Nanjo Y; Nakamura T; Komatsu S
    J Proteome Res; 2013 Nov; 12(11):4785-98. PubMed ID: 23659366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative proteomic analysis of early-stage soybean seedlings responses to flooding by using gel and gel-free techniques.
    Nanjo Y; Skultety L; Ashraf Y; Komatsu S
    J Proteome Res; 2010 Aug; 9(8):3989-4002. PubMed ID: 20540568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.