These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
489 related articles for article (PubMed ID: 25807048)
1. Investigation of mixotrophic, heterotrophic, and autotrophic growth of Chlorella vulgaris under agricultural waste medium. Mohammad Mirzaie MA; Kalbasi M; Mousavi SM; Ghobadian B Prep Biochem Biotechnol; 2016; 46(2):150-6. PubMed ID: 25807048 [TBL] [Abstract][Full Text] [Related]
2. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Abreu AP; Fernandes B; Vicente AA; Teixeira J; Dragone G Bioresour Technol; 2012 Aug; 118():61-6. PubMed ID: 22705507 [TBL] [Abstract][Full Text] [Related]
3. Genome-Scale Metabolic Model for the Green Alga Chlorella vulgaris UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions. Zuñiga C; Li CT; Huelsman T; Levering J; Zielinski DC; McConnell BO; Long CP; Knoshaug EP; Guarnieri MT; Antoniewicz MR; Betenbaugh MJ; Zengler K Plant Physiol; 2016 Sep; 172(1):589-602. PubMed ID: 27372244 [TBL] [Abstract][Full Text] [Related]
4. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Liang Y; Sarkany N; Cui Y Biotechnol Lett; 2009 Jul; 31(7):1043-9. PubMed ID: 19322523 [TBL] [Abstract][Full Text] [Related]
5. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Yeh KL; Chang JS Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073 [TBL] [Abstract][Full Text] [Related]
6. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions. Kim S; Park JE; Cho YB; Hwang SJ Bioresour Technol; 2013 Sep; 144():8-13. PubMed ID: 23850820 [TBL] [Abstract][Full Text] [Related]
7. Effect of carbon sources on growth and lipid accumulation of newly isolated microalgae cultured under mixotrophic condition. Lin TS; Wu JY Bioresour Technol; 2015 May; 184():100-107. PubMed ID: 25443671 [TBL] [Abstract][Full Text] [Related]
8. Mixotrophic cultivation of Chlorella for local protein production using agro-food by-products. Salati S; D'Imporzano G; Menin B; Veronesi D; Scaglia B; Abbruscato P; Mariani P; Adani F Bioresour Technol; 2017 Apr; 230():82-89. PubMed ID: 28161624 [TBL] [Abstract][Full Text] [Related]
9. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition. Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001 [TBL] [Abstract][Full Text] [Related]
10. Statistical evaluation and modeling of cheap substrate-based cultivation medium of Chlorella vulgaris to enhance microalgae lipid as new potential feedstock for biolubricant. Mohammad Mirzaie MA; Kalbasi M; Mousavi SM; Ghobadian B Prep Biochem Biotechnol; 2016 May; 46(4):368-75. PubMed ID: 25844976 [TBL] [Abstract][Full Text] [Related]
11. Oil accumulation via heterotrophic/mixotrophic Chlorella protothecoides. Heredia-Arroyo T; Wei W; Hu B Appl Biochem Biotechnol; 2010 Nov; 162(7):1978-95. PubMed ID: 20443076 [TBL] [Abstract][Full Text] [Related]
12. A symbiotic yeast to enhance heterotrophic and mixotrophic cultivation of Chlorella pyrenoidosa using sucrose as the carbon source. Tian YT; Wang X; Cui YH; Wang SK Bioprocess Biosyst Eng; 2020 Dec; 43(12):2243-2252. PubMed ID: 32671549 [TBL] [Abstract][Full Text] [Related]
13. Implication of Industrial Waste for Biomass and Lipid Production in Chlorella minutissima Under Autotrophic, Heterotrophic, and Mixotrophic Grown Conditions. Dubey KK; Kumar S; Dixit D; Kumar P; Kumar D; Jawed A; Haque S Appl Biochem Biotechnol; 2015 Jul; 176(6):1581-95. PubMed ID: 25971804 [TBL] [Abstract][Full Text] [Related]
14. Maximizing Biomass and Lipid Production in Heterotrophic Culture of Chlorella vulgaris: Techno-Economic Assessment. Morowvat MH; Ghasemi Y Recent Pat Food Nutr Agric; 2019; 10(2):115-123. PubMed ID: 30205808 [TBL] [Abstract][Full Text] [Related]
15. Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity. Ye Y; Huang Y; Xia A; Fu Q; Liao Q; Zeng W; Zheng Y; Zhu X Bioresour Technol; 2018 Dec; 270():80-87. PubMed ID: 30212777 [TBL] [Abstract][Full Text] [Related]
16. Effect of nitrogen regime on microalgal lipid production during mixotrophic growth with glycerol. Paranjape K; Leite GB; Hallenbeck PC Bioresour Technol; 2016 Aug; 214():778-786. PubMed ID: 27220067 [TBL] [Abstract][Full Text] [Related]
17. Kinetic modelling of growth and storage molecule production in microalgae under mixotrophic and autotrophic conditions. Adesanya VO; Davey MP; Scott SA; Smith AG Bioresour Technol; 2014 Apr; 157():293-304. PubMed ID: 24576922 [TBL] [Abstract][Full Text] [Related]
18. [Effects of glucose on photosynthesis and growth of Chloralla sp. HN08 cells]. Lang X; Liu Z; Xu M; Xie L; Li R Wei Sheng Wu Xue Bao; 2017 Apr; 57(4):550-9. PubMed ID: 29756738 [TBL] [Abstract][Full Text] [Related]
19. Insights into the physiology of Chlorella vulgaris cultivated in sweet sorghum bagasse hydrolysate for sustainable algal biomass and lipid production. Arora N; Philippidis GP Sci Rep; 2021 Mar; 11(1):6779. PubMed ID: 33762646 [TBL] [Abstract][Full Text] [Related]