These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
489 related articles for article (PubMed ID: 25807048)
21. A two-stage cultivation process for the growth enhancement of Chlorella vulgaris. Yen HW; Chang JT Bioprocess Biosyst Eng; 2013 Nov; 36(11):1797-801. PubMed ID: 23411876 [TBL] [Abstract][Full Text] [Related]
22. Using chlorella vulgaris for nutrient removal from hydroponic wastewater: experimental investigation and economic assessment. Yousif YID; Mohamed ES; El-Gendy AS Water Sci Technol; 2022 Jun; 85(11):3240-3258. PubMed ID: 35704408 [TBL] [Abstract][Full Text] [Related]
23. Physiological and Ecological Aspects of Chlorella sorokiniana (Trebouxiophyceae) Under Photoautotrophic and Mixotrophic Conditions. Marchello AE; Dos Santos AC; Lombardi AT; de Souza CWO; Montanhim GC Microb Ecol; 2018 Oct; 76(3):791-800. PubMed ID: 29520451 [TBL] [Abstract][Full Text] [Related]
24. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Wang Y; Guo W; Yen HW; Ho SH; Lo YC; Cheng CL; Ren N; Chang JS Bioresour Technol; 2015 Dec; 198():619-25. PubMed ID: 26433786 [TBL] [Abstract][Full Text] [Related]
25. Effect of pH on growth and lipid accumulation kinetics of the microalga Chlorella vulgaris grown heterotrophically under sulfur limitation. Sakarika M; Kornaros M Bioresour Technol; 2016 Nov; 219():694-701. PubMed ID: 27544920 [TBL] [Abstract][Full Text] [Related]
26. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis. Zheng H; Gao Z; Yin F; Ji X; Huang H Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706 [TBL] [Abstract][Full Text] [Related]
27. [Effect of inorganic carbon source on lipid production with autotrophic Chlorella vulgaris]. Zheng H; Gao Z; Zhang Q; Huang H; Ji X; Sun H; Dou C Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):436-44. PubMed ID: 21650025 [TBL] [Abstract][Full Text] [Related]
28. Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: II. Heterotrophic conditions. Choix FJ; de-Bashan LE; Bashan Y Enzyme Microb Technol; 2012 Oct; 51(5):300-9. PubMed ID: 22975129 [TBL] [Abstract][Full Text] [Related]
29. Outdoor cultivation of the green microalga Chlorella vulgaris under stress conditions as a feedstock for biofuel. El-Sheekh MM; Gheda SF; El-Sayed AEB; Abo Shady AM; El-Sheikh ME; Schagerl M Environ Sci Pollut Res Int; 2019 Jun; 26(18):18520-18532. PubMed ID: 31049862 [TBL] [Abstract][Full Text] [Related]
30. Biodiesel production from hydrolysate of Cyperus esculentus waste by Chlorella vulgaris. Wang W; Zhou W; Liu J; Li Y; Zhang Y Bioresour Technol; 2013 May; 136():24-9. PubMed ID: 23548401 [TBL] [Abstract][Full Text] [Related]
31. Effect of light conditions on mixotrophic cultivation of green microalgae. Patel AK; Joun JM; Hong ME; Sim SJ Bioresour Technol; 2019 Jun; 282():245-253. PubMed ID: 30870690 [TBL] [Abstract][Full Text] [Related]
32. Effects of temperature and substrate concentration on lipid production by Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues (LMBRs). Ma X; Zheng H; Huang H; Liu Y; Ruan R Appl Biochem Biotechnol; 2014 Oct; 174(4):1631-1650. PubMed ID: 25138600 [TBL] [Abstract][Full Text] [Related]
33. Effect of Different Cultivation Modes (Photoautotrophic, Mixotrophic, and Heterotrophic) on the Growth of Yun HS; Kim YS; Yoon HS Front Bioeng Biotechnol; 2021; 9():774143. PubMed ID: 34976972 [TBL] [Abstract][Full Text] [Related]
34. The Contribution Ratio of Autotrophic and Heterotrophic Metabolism during a Mixotrophic Culture of Park JE; Zhang S; Han TH; Hwang SJ Int J Environ Res Public Health; 2021 Feb; 18(3):. PubMed ID: 33540891 [TBL] [Abstract][Full Text] [Related]
35. Heterotrophy as a tool to overcome the long and costly autotrophic scale-up process for large scale production of microalgae. Barros A; Pereira H; Campos J; Marques A; Varela J; Silva J Sci Rep; 2019 Sep; 9(1):13935. PubMed ID: 31558732 [TBL] [Abstract][Full Text] [Related]
36. Removal of polycyclic aromatic hydrocarbons (PAHs) from produced water using the microalgae Chlorella vulgaris cultivated in mixotrophic and heterotrophic conditions. Ñañez KB; Rios Ramirez KD; Cordeiro de Oliveira OM; Reyes CY; Andrade Moreira ÍT Chemosphere; 2024 May; 356():141931. PubMed ID: 38614391 [TBL] [Abstract][Full Text] [Related]
37. Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs. Park WK; Moon M; Kwak MS; Jeon S; Choi GG; Yang JW; Lee B Bioresour Technol; 2014 Nov; 171():343-9. PubMed ID: 25218207 [TBL] [Abstract][Full Text] [Related]
38. Dual-mode cultivation of Chlorella protothecoides applying inter-reactors gas transfer improves microalgae biodiesel production. Santos CA; Nobre B; Lopes da Silva T; Pinheiro HM; Reis A J Biotechnol; 2014 Aug; 184():74-83. PubMed ID: 24862195 [TBL] [Abstract][Full Text] [Related]
39. Analysis of growth and lipid production characteristics of Chlorella vulgaris in artificially constructed consortia with symbiotic bacteria. Xue L; Shang H; Ma P; Wang X; He X; Niu J; Wu J J Basic Microbiol; 2018 Apr; 58(4):358-367. PubMed ID: 29488634 [TBL] [Abstract][Full Text] [Related]
40. Comparison of biomass production and total lipid content of freshwater green microalgae cultivated under various culture conditions. Gim GH; Kim JK; Kim HS; Kathiravan MN; Yang H; Jeong SH; Kim SW Bioprocess Biosyst Eng; 2014 Feb; 37(2):99-106. PubMed ID: 23640179 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]