These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Alignment of lysine-anchored membrane peptides under conditions of hydrophobic mismatch: a CD, 15N and 31P solid-state NMR spectroscopy investigation. Harzer U; Bechinger B Biochemistry; 2000 Oct; 39(43):13106-14. PubMed ID: 11052662 [TBL] [Abstract][Full Text] [Related]
4. Analyzing the effects of hydrophobic mismatch on transmembrane α-helices using tryptophan fluorescence spectroscopy. Caputo GA Methods Mol Biol; 2013; 1063():95-116. PubMed ID: 23975773 [TBL] [Abstract][Full Text] [Related]
5. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239 [TBL] [Abstract][Full Text] [Related]
6. Influence of lipid/peptide hydrophobic mismatch on the thickness of diacylphosphatidylcholine bilayers. A 2H NMR and ESR study using designed transmembrane alpha-helical peptides and gramicidin A. de Planque MR; Greathouse DV; Koeppe RE; Schäfer H; Marsh D; Killian JA Biochemistry; 1998 Jun; 37(26):9333-45. PubMed ID: 9649314 [TBL] [Abstract][Full Text] [Related]
7. Influence of transmembrane peptides on bilayers of phosphatidylcholines with different acyl chain lengths studied by solid-state NMR. Byström T; Strandberg E; Kovacs FA; Cross TA; Lindblom G Biochim Biophys Acta; 2000 Dec; 1509(1-2):335-45. PubMed ID: 11118544 [TBL] [Abstract][Full Text] [Related]
9. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini. Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077 [TBL] [Abstract][Full Text] [Related]
10. Hydrophobic mismatch between helices and lipid bilayers. Weiss TM; van der Wel PC; Killian JA; Koeppe RE; Huang HW Biophys J; 2003 Jan; 84(1):379-85. PubMed ID: 12524291 [TBL] [Abstract][Full Text] [Related]
11. Transmembrane helices of membrane proteins may flex to satisfy hydrophobic mismatch. Yeagle PL; Bennett M; Lemaître V; Watts A Biochim Biophys Acta; 2007 Mar; 1768(3):530-7. PubMed ID: 17223071 [TBL] [Abstract][Full Text] [Related]
12. Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions. de Planque MR; Bonev BB; Demmers JA; Greathouse DV; Koeppe RE; Separovic F; Watts A; Killian JA Biochemistry; 2003 May; 42(18):5341-8. PubMed ID: 12731875 [TBL] [Abstract][Full Text] [Related]
13. Correlation of three-dimensional structures with the antibacterial activity of a group of peptides designed based on a nontoxic bacterial membrane anchor. Wang G; Li Y; Li X J Biol Chem; 2005 Feb; 280(7):5803-11. PubMed ID: 15572363 [TBL] [Abstract][Full Text] [Related]
14. On the design of supramolecular assemblies made of peptides and lipid bilayers. Kemayo Koumkoua P; Aisenbrey C; Salnikov E; Rifi O; Bechinger B J Pept Sci; 2014 Jul; 20(7):526-36. PubMed ID: 24909405 [TBL] [Abstract][Full Text] [Related]
15. Bilayer thickness determines the alignment of model polyproline helices in lipid membranes. Kubyshkin V; Grage SL; Ulrich AS; Budisa N Phys Chem Chem Phys; 2019 Oct; 21(40):22396-22408. PubMed ID: 31577299 [TBL] [Abstract][Full Text] [Related]
16. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552 [TBL] [Abstract][Full Text] [Related]
17. Studies of the minimum hydrophobicity of alpha-helical peptides required to maintain a stable transmembrane association with phospholipid bilayer membranes. Lewis RN; Liu F; Krivanek R; Rybar P; Hianik T; Flach CR; Mendelsohn R; Chen Y; Mant CT; Hodges RS; McElhaney RN Biochemistry; 2007 Jan; 46(4):1042-54. PubMed ID: 17240988 [TBL] [Abstract][Full Text] [Related]
18. Influence of the Length and Charge on the Activity of α-Helical Amphipathic Antimicrobial Peptides. Gagnon MC; Strandberg E; Grau-Campistany A; Wadhwani P; Reichert J; Bürck J; Rabanal F; Auger M; Paquin JF; Ulrich AS Biochemistry; 2017 Mar; 56(11):1680-1695. PubMed ID: 28282123 [TBL] [Abstract][Full Text] [Related]
19. The determinants of hydrophobic mismatch response for transmembrane helices. de Jesus AJ; Allen TW Biochim Biophys Acta; 2013 Feb; 1828(2):851-63. PubMed ID: 22995244 [TBL] [Abstract][Full Text] [Related]
20. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]