These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 25807279)

  • 1. Nanostructured pseudocapacitive materials decorated 3D graphene foam electrodes for next generation supercapacitors.
    Patil U; Lee SC; Kulkarni S; Sohn JS; Nam MS; Han S; Jun SC
    Nanoscale; 2015 Apr; 7(16):6999-7021. PubMed ID: 25807279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intertwined nanocarbon and manganese oxide hybrid foam for high-energy supercapacitors.
    Wang W; Guo S; Bozhilov KN; Yan D; Ozkan M; Ozkan CS
    Small; 2013 Nov; 9(21):3714-21. PubMed ID: 23650047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical supercapacitors from conducting polyaniline-graphene platforms.
    Ashok Kumar N; Baek JB
    Chem Commun (Camb); 2014 Jun; 50(48):6298-308. PubMed ID: 24797734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of Electrodes with β-Nickel Hydroxide/CVD-Graphene/3D-Nickel Foam Composite Structures to Enhance the Capacitance Characteristics of Supercapacitors.
    Lu YM; Hong SH
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing pseudocapacitive charge storage in polymer templated mesoporous materials.
    Rauda IE; Augustyn V; Dunn B; Tolbert SH
    Acc Chem Res; 2013 May; 46(5):1113-24. PubMed ID: 23485203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoarchitectured graphene-based supercapacitors for next-generation energy-storage applications.
    Salunkhe RR; Lee YH; Chang KH; Li JM; Simon P; Tang J; Torad NL; Hu CC; Yamauchi Y
    Chemistry; 2014 Oct; 20(43):13838-52. PubMed ID: 25251360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An overview of the applications of graphene-based materials in supercapacitors.
    Huang Y; Liang J; Chen Y
    Small; 2012 Jun; 8(12):1805-34. PubMed ID: 22514114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon-based electrochemical capacitors.
    Ghosh A; Lee YH
    ChemSusChem; 2012 Mar; 5(3):480-99. PubMed ID: 22389329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rational design of nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell.
    Han J; Wang K; Liu W; Li C; Sun X; Zhang X; An Y; Yi S; Ma Y
    Nanoscale; 2018 Jul; 10(27):13083-13091. PubMed ID: 29961783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors.
    Zhang H; Bhat VV; Gallego NC; Contescu CI
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3239-46. PubMed ID: 22680779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conducting polymer nanowire arrays for high performance supercapacitors.
    Wang K; Wu H; Meng Y; Wei Z
    Small; 2014 Jan; 10(1):14-31. PubMed ID: 23959804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The implementation of graphene-based aerogel in the field of supercapacitor.
    Shaikh JS; Shaikh NS; Mishra YK; Pawar SS; Parveen N; Shewale PM; Sabale S; Kanjanaboos P; Praserthdam S; Lokhande CD
    Nanotechnology; 2021 Jun; 32(36):. PubMed ID: 34125718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.
    Xu Y; Shi G; Duan X
    Acc Chem Res; 2015 Jun; 48(6):1666-75. PubMed ID: 26042764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural design of graphene for use in electrochemical energy storage devices.
    Chen K; Song S; Liu F; Xue D
    Chem Soc Rev; 2015 Oct; 44(17):6230-57. PubMed ID: 26051987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron oxide-decorated carbon for supercapacitor anodes with ultrahigh energy density and outstanding cycling stability.
    Guan C; Liu J; Wang Y; Mao L; Fan Z; Shen Z; Zhang H; Wang J
    ACS Nano; 2015 May; 9(5):5198-207. PubMed ID: 25868870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors.
    Moosavifard SE; El-Kady MF; Rahmanifar MS; Kaner RB; Mousavi MF
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4851-60. PubMed ID: 25671715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced supercapacitive performance of chemically grown cobalt-nickel hydroxides on three-dimensional graphene foam electrodes.
    Patil UM; Sohn JS; Kulkarni SB; Lee SC; Park HG; Gurav KV; Kim JH; Jun SC
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2450-8. PubMed ID: 24495203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanostructured metal sulfides for energy storage.
    Rui X; Tan H; Yan Q
    Nanoscale; 2014 Sep; 6(17):9889-924. PubMed ID: 25073046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review.
    Zhi M; Xiang C; Li J; Li M; Wu N
    Nanoscale; 2013 Jan; 5(1):72-88. PubMed ID: 23151936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.