BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 25807291)

  • 1. Room temperature infrared imaging sensors based on highly purified semiconducting carbon nanotubes.
    Liu Y; Wei N; Zhao Q; Zhang D; Wang S; Peng LM
    Nanoscale; 2015 Apr; 7(15):6805-12. PubMed ID: 25807291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High performance semiconducting enriched carbon nanotube thin film transistors using metallic carbon nanotubes as electrodes.
    Sarker BK; Kang N; Khondaker SI
    Nanoscale; 2014 May; 6(9):4896-902. PubMed ID: 24671657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays.
    Engel M; Small JP; Steiner M; Freitag M; Green AA; Hersam MC; Avouris P
    ACS Nano; 2008 Dec; 2(12):2445-52. PubMed ID: 19206278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance Shortwave Infrared Detector Based on Multilayer Carbon Nanotube Films.
    Cai X; Hong D; Wu W; Han B; Liang X; Wang S
    ACS Appl Mater Interfaces; 2023 Mar; 15(10):13508-13516. PubMed ID: 36853991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A polarized infrared thermal detector made from super-aligned multiwalled carbon nanotube films.
    Xiao L; Zhang Y; Wang Y; Liu K; Wang Z; Li T; Jiang Z; Shi J; Liu L; Li Q; Zhao Y; Feng Z; Fan S; Jiang K
    Nanotechnology; 2011 Jan; 22(2):025502. PubMed ID: 21135478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Batch Fabrication of Ultrasensitive Carbon Nanotube Hydrogen Sensors with Sub-ppm Detection Limit.
    Xiao M; Liang S; Han J; Zhong D; Liu J; Zhang Z; Peng L
    ACS Sens; 2018 Apr; 3(4):749-756. PubMed ID: 29620873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable Preparation of High-Density Semiconducting Carbon Nanotube Arrays for High-Performance Field-Effect Transistors.
    Si J; Zhong D; Xu H; Xiao M; Yu C; Zhang Z; Peng LM
    ACS Nano; 2018 Jan; 12(1):627-634. PubMed ID: 29303553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid Films of Graphene and Carbon Nanotubes for High Performance Chemical and Temperature Sensing Applications.
    Tung TT; Pham-Huu C; Janowska I; Kim T; Castro M; Feller JF
    Small; 2015 Jul; 11(28):3485-93. PubMed ID: 25808714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-performance printed carbon nanotube thin-film transistors array fabricated by a nonlithography technique using hafnium oxide passivation layer and mask.
    Pillai SK; Chan-Park MB
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):7047-54. PubMed ID: 23194001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High Conversion Efficiency Carbon Nanotube-Based Barrier-Free Bipolar-Diode Photodetector.
    Wang F; Wang S; Yao F; Xu H; Wei N; Liu K; Peng LM
    ACS Nano; 2016 Oct; 10(10):9595-9601. PubMed ID: 27632420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast-response room temperature hydrogen gas sensors using platinum-coated spin-capable carbon nanotubes.
    Jung D; Han M; Lee GS
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3050-7. PubMed ID: 25619413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Enhanced Performance of an Infrared Detector Based on Carbon Nanotube Films.
    Huang H; Wang F; Liu Y; Wang S; Peng LM
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12743-12749. PubMed ID: 28322049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fabrication of vertically aligned and periodically distributed carbon nanotube bundles and periodically porous carbon nanotube films through a combination of laser interference ablation and metal-catalyzed chemical vapor deposition.
    Yuan D; Lin W; Guo R; Wong CP; Das S
    Nanotechnology; 2012 Jun; 23(21):215303. PubMed ID: 22551592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer-Free Electronic-Grade Aligned Semiconducting Carbon Nanotube Array.
    Joo Y; Brady GJ; Kanimozhi C; Ko J; Shea MJ; Strand MT; Arnold MS; Gopalan P
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28859-28867. PubMed ID: 28758721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wafer-scale striped network transistors based on purified semiconducting carbon nanotubes for commercialization.
    An Y; Lee Y; Kim DM; Kim DH; Bae JH; Kang MH; Choi SJ
    Nanotechnology; 2023 Jul; 34(40):. PubMed ID: 37399798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon Nanotube Self-Gating Diode and Application in Integrated Circuits.
    Si J; Liu L; Wang F; Zhang Z; Peng LM
    ACS Nano; 2016 Jul; 10(7):6737-43. PubMed ID: 27322134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Performance, Ultra-Broadband, Ultraviolet to Terahertz Photodetectors Based on Suspended Carbon Nanotube Films.
    Liu Y; Yin J; Wang P; Hu Q; Wang Y; Xie Y; Zhao Z; Dong Z; Zhu JL; Chu W; Yang N; Wei J; Ma W; Sun JL
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36304-36311. PubMed ID: 30264557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics.
    Liu L; Han J; Xu L; Zhou J; Zhao C; Ding S; Shi H; Xiao M; Ding L; Ma Z; Jin C; Zhang Z; Peng LM
    Science; 2020 May; 368(6493):850-856. PubMed ID: 32439787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.