BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25807472)

  • 21. High-bandwidth AFM-based rheology is a sensitive indicator of early cartilage aggrecan degradation relevant to mouse models of osteoarthritis.
    Nia HT; Gauci SJ; Azadi M; Hung HH; Frank E; Fosang AJ; Ortiz C; Grodzinsky AJ
    J Biomech; 2015 Jan; 48(1):162-5. PubMed ID: 25435386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomechanical properties of murine meniscus surface via AFM-based nanoindentation.
    Li Q; Doyran B; Gamer LW; Lu XL; Qin L; Ortiz C; Grodzinsky AJ; Rosen V; Han L
    J Biomech; 2015 Jun; 48(8):1364-70. PubMed ID: 25817332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of single-phase isotropic elastic and fibril-reinforced poroelastic models for indentation of rabbit articular cartilage.
    Julkunen P; Harjula T; Marjanen J; Helminen HJ; Jurvelin JS
    J Biomech; 2009 Mar; 42(5):652-6. PubMed ID: 19193381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling and simulation of the mechanical response from nanoindentation test of DNA-filled viral capsids.
    Ahadi A; Johansson D; Evilevitch A
    J Biol Phys; 2013 Mar; 39(2):183-99. PubMed ID: 23860868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Importance of material properties and porosity of bone on mechanical response of articular cartilage in human knee joint--a two-dimensional finite element study.
    Venäläinen MS; Mononen ME; Jurvelin JS; Töyräs J; Virén T; Korhonen RK
    J Biomech Eng; 2014 Dec; 136(12):121005. PubMed ID: 25322202
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aggrecan nanoscale solid-fluid interactions are a primary determinant of cartilage dynamic mechanical properties.
    Nia HT; Han L; Bozchalooi IS; Roughley P; Youcef-Toumi K; Grodzinsky AJ; Ortiz C
    ACS Nano; 2015 Mar; 9(3):2614-25. PubMed ID: 25758717
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time and depth dependent Poisson's ratio of cartilage explained by an inhomogeneous orthotropic fiber embedded biphasic model.
    Chegini S; Ferguson SJ
    J Biomech; 2010 Jun; 43(9):1660-6. PubMed ID: 20392445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cryogel micromechanics unraveled by atomic force microscopy-based nanoindentation.
    Welzel PB; Friedrichs J; Grimmer M; Vogler S; Freudenberg U; Werner C
    Adv Healthc Mater; 2014 Nov; 3(11):1849-53. PubMed ID: 24729299
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heterogeneous nanomechanical properties of superficial and zonal regions of articular cartilage of the rabbit proximal radius condyle by atomic force microscopy.
    Tomkoria S; Patel RV; Mao JJ
    Med Eng Phys; 2004 Dec; 26(10):815-22. PubMed ID: 15567698
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A phenomenological approach toward patient-specific computational modeling of articular cartilage including collagen fiber tracking.
    Pierce DM; Trobin W; Trattnig S; Bischof H; Holzapfel GA
    J Biomech Eng; 2009 Sep; 131(9):091006. PubMed ID: 19725695
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue.
    Carnelli D; Gastaldi D; Sassi V; Contro R; Ortiz C; Vena P
    J Biomech Eng; 2010 Aug; 132(8):081008. PubMed ID: 20670057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Minimum design requirements for a poroelastic mimic of articular cartilage.
    Tan WS; Moore AC; Stevens MM
    J Mech Behav Biomed Mater; 2023 Jan; 137():105528. PubMed ID: 36343521
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transversely isotropic material characterization of the human anterior longitudinal ligament.
    Hortin M; Graham S; Boatwright K; Hyoung P; Bowden A
    J Mech Behav Biomed Mater; 2015 May; 45():75-82. PubMed ID: 25688029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A biphasic viscohyperelastic fibril-reinforced model for articular cartilage: formulation and comparison with experimental data.
    García JJ; Cortés DH
    J Biomech; 2007; 40(8):1737-44. PubMed ID: 17014853
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechano-acoustic determination of Young's modulus of articular cartilage.
    Saarakkala S; Korhonen RK; Laasanen MS; Töyräs J; Rieppo J; Jurvelin JS
    Biorheology; 2004; 41(3-4):167-79. PubMed ID: 15299250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wide bandwidth nanomechanical assessment of murine cartilage reveals protection of aggrecan knock-in mice from joint-overuse.
    Azadi M; Nia HT; Gauci SJ; Ortiz C; Fosang AJ; Grodzinsky AJ
    J Biomech; 2016 Jun; 49(9):1634-1640. PubMed ID: 27086115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Imaging articular cartilage tissue using atomic force microscopy (AFM).
    Plodinec M; Loparic M; Aebi U
    Cold Spring Harb Protoc; 2010 Oct; 2010(10):pdb.prot5499. PubMed ID: 20889696
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Variation in viscoelastic properties of bovine articular cartilage below, up to and above healthy gait-relevant loading frequencies.
    Sadeghi H; Espino DM; Shepherd DE
    Proc Inst Mech Eng H; 2015 Feb; 229(2):115-23. PubMed ID: 25767149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.