These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Characterization of plant microRNA-encoded peptides (miPEPs) reveals molecular mechanisms from the translation to activity and specificity. Lauressergues D; Ormancey M; Guillotin B; San Clemente H; Camborde L; Duboé C; Tourneur S; Charpentier P; Barozet A; Jauneau A; Le Ru A; Thuleau P; Gervais V; Plaza S; Combier JP Cell Rep; 2022 Feb; 38(6):110339. PubMed ID: 35139385 [TBL] [Abstract][Full Text] [Related]
3. Evidence That Regulation of Pri-miRNA/miRNA Expression Is Not a General Rule of miPEPs Function in Humans. Prel A; Dozier C; Combier JP; Plaza S; Besson A Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33810468 [TBL] [Abstract][Full Text] [Related]
4. The Essentials on microRNA-Encoded Peptides from Plants to Animals. Ormancey M; Thuleau P; Combier JP; Plaza S Biomolecules; 2023 Jan; 13(2):. PubMed ID: 36830576 [TBL] [Abstract][Full Text] [Related]
5. miRNA-encoded peptides (miPEPs): A new tool to analyze the roles of miRNAs in plant biology. Couzigou JM; Lauressergues D; Bécard G; Combier JP RNA Biol; 2015; 12(11):1178-80. PubMed ID: 26400469 [TBL] [Abstract][Full Text] [Related]
6. In silico identification of candidate miRNA-encoded Peptides in four Fabaceae species. de Araújo PM; Grativol C Comput Biol Chem; 2022 Apr; 97():107644. PubMed ID: 35219006 [TBL] [Abstract][Full Text] [Related]
7. Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula. Long RC; Li MN; Kang JM; Zhang TJ; Sun Y; Yang QC Physiol Plant; 2015 May; 154(1):13-27. PubMed ID: 25156209 [TBL] [Abstract][Full Text] [Related]
8. Coding of Non-coding RNA: Insights Into the Regulatory Functions of Pri-MicroRNA-Encoded Peptides in Plants. Ren Y; Song Y; Zhang L; Guo D; He J; Wang L; Song S; Xu W; Zhang C; Lers A; Ma C; Wang S Front Plant Sci; 2021; 12():641351. PubMed ID: 33719320 [TBL] [Abstract][Full Text] [Related]
9. Primary transcript of miR858 encodes regulatory peptide and controls flavonoid biosynthesis and development in Arabidopsis. Sharma A; Badola PK; Bhatia C; Sharma D; Trivedi PK Nat Plants; 2020 Oct; 6(10):1262-1274. PubMed ID: 32958895 [TBL] [Abstract][Full Text] [Related]
10. An overview on miRNA-encoded peptides in plant biology research. Yadav A; Sanyal I; Rai SP; Lata C Genomics; 2021 Jul; 113(4):2385-2391. PubMed ID: 34022345 [TBL] [Abstract][Full Text] [Related]
11. Regulatory miPEP Open Reading Frames Contained in the Primary Transcripts of microRNAs. Erokhina TN; Ryazantsev DY; Zavriev SK; Morozov SY Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768436 [TBL] [Abstract][Full Text] [Related]
12. The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. Imin N; Mohd-Radzman NA; Ogilvie HA; Djordjevic MA J Exp Bot; 2013 Dec; 64(17):5395-409. PubMed ID: 24259455 [TBL] [Abstract][Full Text] [Related]
13. Cis-regulatory PLETHORA promoter elements directing root and nodule expression are conserved between Arabidopsis thaliana and Medicago truncatula. Franssen HJ; Kulikova O; Willemsen V; Heidstra R Plant Signal Behav; 2017 Feb; 12(2):e1278102. PubMed ID: 28067580 [TBL] [Abstract][Full Text] [Related]
14. Light-dependent expression and accumulation of miR408-encoded peptide, miPEP408, is regulated by HY5 in Arabidopsis. Kumar RS; Datta T; Sinha H; Trivedi PK Biochem Biophys Res Commun; 2024 Apr; 706():149764. PubMed ID: 38484569 [TBL] [Abstract][Full Text] [Related]
15. Regulatory Peptide Encoded by the Primary Transcript of miR396a Influences Gene Expression and Root Development in Wang Z; Lv R; Su C; Li Y; Fang S; Yang R; Zhu J; Wang R; Meng J; Luan Y J Agric Food Chem; 2024 Jul; 72(29):16390-16402. PubMed ID: 38994823 [TBL] [Abstract][Full Text] [Related]
16. Activity of Chemically Synthesized Peptide Encoded by the miR156A Precursor and Conserved in the Brassicaceae Family Plants. Erokhina TN; Ryazantsev DY; Samokhvalova LV; Mozhaev AA; Orsa AN; Zavriev SK; Morozov SY Biochemistry (Mosc); 2021 May; 86(5):551-562. PubMed ID: 33993858 [TBL] [Abstract][Full Text] [Related]
17. Translational and structural requirements of the early nodulin gene enod40, a short-open reading frame-containing RNA, for elicitation of a cell-specific growth response in the alfalfa root cortex. Sousa C; Johansson C; Charon C; Manyani H; Sautter C; Kondorosi A; Crespi M Mol Cell Biol; 2001 Jan; 21(1):354-66. PubMed ID: 11113209 [TBL] [Abstract][Full Text] [Related]
18. Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. Chen L; Wang T; Zhao M; Tian Q; Zhang WH Planta; 2012 Feb; 235(2):375-86. PubMed ID: 21909758 [TBL] [Abstract][Full Text] [Related]
19. A miRNA-Encoded Small Peptide, vvi-miPEP171d1, Regulates Adventitious Root Formation. Chen QJ; Deng BH; Gao J; Zhao ZY; Chen ZL; Song SR; Wang L; Zhao LP; Xu WP; Zhang CX; Ma C; Wang SP Plant Physiol; 2020 Jun; 183(2):656-670. PubMed ID: 32241877 [TBL] [Abstract][Full Text] [Related]
20. PRL1, an RNA-binding protein, positively regulates the accumulation of miRNAs and siRNAs in Arabidopsis. Zhang S; Liu Y; Yu B PLoS Genet; 2014 Dec; 10(12):e1004841. PubMed ID: 25474114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]