BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 25807539)

  • 1. The highly conserved codon following the slippery sequence supports -1 frameshift efficiency at the HIV-1 frameshift site.
    Mathew SF; Crowe-McAuliffe C; Graves R; Cardno TS; McKinney C; Poole ES; Tate WP
    PLoS One; 2015; 10(3):e0122176. PubMed ID: 25807539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the frameshift stimulatory signal controlling a programmed -1 ribosomal frameshift in the human immunodeficiency virus type 1.
    Dulude D; Baril M; Brakier-Gingras L
    Nucleic Acids Res; 2002 Dec; 30(23):5094-102. PubMed ID: 12466532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of a coronavirus ribosomal frameshift signal in Escherichia coli: influence of tRNA anticodon modification on frameshifting.
    Brierley I; Meredith MR; Bloys AJ; Hagervall TG
    J Mol Biol; 1997 Jul; 270(3):360-73. PubMed ID: 9237903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a cellular factor that modulates HIV-1 programmed ribosomal frameshifting.
    Kobayashi Y; Zhuang J; Peltz S; Dougherty J
    J Biol Chem; 2010 Jun; 285(26):19776-84. PubMed ID: 20418372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stability of HIV Frameshift Site RNA Correlates with Frameshift Efficiency and Decreased Virus Infectivity.
    Garcia-Miranda P; Becker JT; Benner BE; Blume A; Sherer NM; Butcher SE
    J Virol; 2016 Aug; 90(15):6906-6917. PubMed ID: 27194769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyses of frameshifting at UUU-pyrimidine sites.
    Schwartz R; Curran JF
    Nucleic Acids Res; 1997 May; 25(10):2005-11. PubMed ID: 9115369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational analysis of the "slippery-sequence" component of a coronavirus ribosomal frameshifting signal.
    Brierley I; Jenner AJ; Inglis SC
    J Mol Biol; 1992 Sep; 227(2):463-79. PubMed ID: 1404364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on architecture of the gag-pol ribosomal frameshifting RNA in human immunodeficiency virus: a variability survey of virus genotypes.
    Qiao Q; Yan Y; Guo J; Du S; Zhang J; Jia R; Ren H; Qiao Y; Li Q
    J Biomol Struct Dyn; 2017 Jun; 35(8):1629-1653. PubMed ID: 27485859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of HIV-1 Gag/Gag-Pol frameshifting by tRNA abundance.
    Korniy N; Goyal A; Hoffmann M; Samatova E; Peske F; Pöhlmann S; Rodnina MV
    Nucleic Acids Res; 2019 Jun; 47(10):5210-5222. PubMed ID: 30968122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Programmed ribosomal frameshifting in SIV is induced by a highly structured RNA stem-loop.
    Marcheschi RJ; Staple DW; Butcher SE
    J Mol Biol; 2007 Oct; 373(3):652-63. PubMed ID: 17868691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site.
    Paul CP; Barry JK; Dinesh-Kumar SP; Brault V; Miller WA
    J Mol Biol; 2001 Jul; 310(5):987-99. PubMed ID: 11502008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the mechanism of leftward frameshifting at several hungry codons.
    Barak Z; Lindsley D; Gallant J
    J Mol Biol; 1996 Mar; 256(4):676-84. PubMed ID: 8642590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maintaining the ribosomal reading frame: the influence of the E site during translational regulation of release factor 2.
    Márquez V; Wilson DN; Tate WP; Triana-Alonso F; Nierhaus KH
    Cell; 2004 Jul; 118(1):45-55. PubMed ID: 15242643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competition between frameshifting, termination and suppression at the frameshift site in the Escherichia coli release factor-2 mRNA.
    Adamski FM; Donly BC; Tate WP
    Nucleic Acids Res; 1993 Nov; 21(22):5074-8. PubMed ID: 7504811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Special peptidyl-tRNA molecules can promote translational frameshifting without slippage.
    Vimaladithan A; Farabaugh PJ
    Mol Cell Biol; 1994 Dec; 14(12):8107-16. PubMed ID: 7969148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of effects of tRNA:message stability on frameshift frequency at the Escherichia coli RF2 programmed frameshift site.
    Curran JF
    Nucleic Acids Res; 1993 Apr; 21(8):1837-43. PubMed ID: 8493101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Q-base of asparaginyl-tRNA is dispensable for efficient -1 ribosomal frameshifting in eukaryotes.
    Marczinke B; Hagervall T; Brierley I
    J Mol Biol; 2000 Jan; 295(2):179-91. PubMed ID: 10623518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative mutational analysis of cis-acting RNA signals for translational frameshifting in HIV-1 and HTLV-2.
    Kim YG; Maas S; Rich A
    Nucleic Acids Res; 2001 Mar; 29(5):1125-31. PubMed ID: 11222762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prokaryotic-style frameshifting in a plant translation system: conservation of an unusual single-tRNA slippage event.
    Napthine S; Vidakovic M; Girnary R; Namy O; Brierley I
    EMBO J; 2003 Aug; 22(15):3941-50. PubMed ID: 12881428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The three transfer RNAs occupying the A, P and E sites on the ribosome are involved in viral programmed -1 ribosomal frameshift.
    Léger M; Dulude D; Steinberg SV; Brakier-Gingras L
    Nucleic Acids Res; 2007; 35(16):5581-92. PubMed ID: 17704133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.