BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 25807827)

  • 1. Purinergic receptors in skeletal muscles in health and in muscular dystrophy.
    Krasowska E; Róg J; Sinadinos A; Young CN; Górecki DC; Zabłocki K
    Postepy Biochem; 2014; 60(4):483-9. PubMed ID: 25807827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purinoceptor expression in regenerating skeletal muscle in the mdx mouse model of muscular dystrophy and in satellite cell cultures.
    Ryten M; Yang SY; Dunn PM; Goldspink G; Burnstock G
    FASEB J; 2004 Sep; 18(12):1404-6. PubMed ID: 15231720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The formation of skeletal muscle myotubes requires functional membrane receptors activated by extracellular ATP.
    Araya R; Riquelme MA; Brandan E; Sáez JC
    Brain Res Brain Res Rev; 2004 Dec; 47(1-3):174-88. PubMed ID: 15572171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. P2 Receptor Signaling in Motor Units in Muscular Dystrophy.
    Khairullin AE; Grishin SN; Ziganshin AU
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased susceptibility to ATP via alteration of P2X receptor function in dystrophic mdx mouse muscle cells.
    Yeung D; Zablocki K; Lien CF; Jiang T; Arkle S; Brutkowski W; Brown J; Lochmuller H; Simon J; Barnard EA; Górecki DC
    FASEB J; 2006 Apr; 20(6):610-20. PubMed ID: 16581969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential expression of three receptor subtypes for extracellular ATP in developing rat skeletal muscle.
    Ryten M; Hoebertz A; Burnstock G
    Dev Dyn; 2001 Jul; 221(3):331-41. PubMed ID: 11458393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP stimulates glucose transport through activation of P2 purinergic receptors in C(2)C(12) skeletal muscle cells.
    Kim MS; Lee J; Ha J; Kim SS; Kong Y; Cho YH; Baik HH; Kang I
    Arch Biochem Biophys; 2002 May; 401(2):205-14. PubMed ID: 12054471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abundant and dynamic expression of G protein-coupled P2Y receptors in mammalian development.
    Cheung KK; Ryten M; Burnstock G
    Dev Dyn; 2003 Oct; 228(2):254-66. PubMed ID: 14517997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of P2 receptors in the growth and survival of neurons in the CNS.
    Franke H; Illes P
    Pharmacol Ther; 2006 Mar; 109(3):297-324. PubMed ID: 16102837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of calcium-independent purinergic receptor-mediated apoptosis in hormone-refractory prostate cancer.
    Shabbir M; Ryten M; Thompson C; Mikhailidis D; Burnstock G
    BJU Int; 2008 Feb; 101(3):352-9. PubMed ID: 18005209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of epithelial transport via luminal P2 receptors.
    Leipziger J
    Am J Physiol Renal Physiol; 2003 Mar; 284(3):F419-32. PubMed ID: 12556361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis.
    Ohsawa K; Irino Y; Nakamura Y; Akazawa C; Inoue K; Kohsaka S
    Glia; 2007 Apr; 55(6):604-16. PubMed ID: 17299767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP and the pathogenesis of COPD.
    Mortaz E; Folkerts G; Nijkamp FP; Henricks PA
    Eur J Pharmacol; 2010 Jul; 638(1-3):1-4. PubMed ID: 20423711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ATPergic signalling during seizures and epilepsy.
    Engel T; Alves M; Sheedy C; Henshall DC
    Neuropharmacology; 2016 May; 104():140-53. PubMed ID: 26549853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-talk between the ATP and ADP nucleotide receptor signalling pathways in glioma C6 cells.
    Czajkowski R; Barańska J
    Acta Biochim Pol; 2002; 49(4):877-89. PubMed ID: 12545194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered ATP-sensitive P2 receptor subtype expression in the Han:SPRD cy/+ rat, a model of autosomal dominant polycystic kidney disease.
    Turner CM; Ramesh B; Srai SK; Burnstock G; Unwin RJ
    Cells Tissues Organs; 2004; 178(3):168-79. PubMed ID: 15655334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increase of intracellular Ca2+ by P2X and P2Y receptor-subtypes in cultured cortical astroglia of the rat.
    Fischer W; Appelt K; Grohmann M; Franke H; Nörenberg W; Illes P
    Neuroscience; 2009 Jun; 160(4):767-83. PubMed ID: 19289154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New heterocyclic ligands for the adenosine receptors P1 and for the ATP receptors P2.
    Baraldi PG; Romagnoli R; Tabrizi MA; Bovero A; Preti D; Fruttarolo F; Moorman AR; Borea PA
    Farmaco; 2005 Mar; 60(3):185-202. PubMed ID: 15784237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteoblast responses to nucleotides increase during differentiation.
    Orriss IR; Knight GE; Ranasinghe S; Burnstock G; Arnett TR
    Bone; 2006 Aug; 39(2):300-9. PubMed ID: 16616882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionotropic purinergic receptor P2X4 is involved in the regulation of chondrogenesis in chicken micromass cell cultures.
    Fodor J; Matta C; Juhász T; Oláh T; Gönczi M; Szíjgyártó Z; Gergely P; Csernoch L; Zákány R
    Cell Calcium; 2009 May; 45(5):421-30. PubMed ID: 19297018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.