These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
47. Myelin loss and oligodendrocyte pathology in white matter tracts following traumatic brain injury in the rat. Flygt J; Djupsjö A; Lenne F; Marklund N Eur J Neurosci; 2013 Jul; 38(1):2153-65. PubMed ID: 23458840 [TBL] [Abstract][Full Text] [Related]
48. White matter and SVZ serve as endogenous sources of glial progenitor cells for self-repair in neonatal rats with ischemic PVL. Mao FX; Li WJ; Chen HJ; Qian LH; Buzby JS Brain Res; 2013 Oct; 1535():38-51. PubMed ID: 23994449 [TBL] [Abstract][Full Text] [Related]
49. Expression of dual nucleotides/cysteinyl-leukotrienes receptor GPR17 in early trafficking of cardiac stromal cells after myocardial infarction. Cosentino S; Castiglioni L; Colazzo F; Nobili E; Tremoli E; Rosa P; Abbracchio MP; Sironi L; Pesce M J Cell Mol Med; 2014 Sep; 18(9):1785-96. PubMed ID: 24909956 [TBL] [Abstract][Full Text] [Related]
50. Oligodendrocyte maturation is inhibited by bone morphogenetic protein. See J; Zhang X; Eraydin N; Mun SB; Mamontov P; Golden JA; Grinspan JB Mol Cell Neurosci; 2004 Aug; 26(4):481-92. PubMed ID: 15276151 [TBL] [Abstract][Full Text] [Related]
51. Rewiring of Glucose and Lipid Metabolism Induced by G Protein-Coupled Receptor 17 Silencing Enables the Transition of Oligodendrocyte Progenitors to Myelinating Cells. Marangon D; Audano M; Pedretti S; Fumagalli M; Mitro N; Lecca D; Caruso D; Abbracchio MP Cells; 2022 Aug; 11(15):. PubMed ID: 35954217 [TBL] [Abstract][Full Text] [Related]
52. Sequence of oligodendrocyte development in the human fetal telencephalon. Jakovcevski I; Zecevic N Glia; 2005 Mar; 49(4):480-91. PubMed ID: 15578660 [TBL] [Abstract][Full Text] [Related]
53. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Najm FJ; Madhavan M; Zaremba A; Shick E; Karl RT; Factor DC; Miller TE; Nevin ZS; Kantor C; Sargent A; Quick KL; Schlatzer DM; Tang H; Papoian R; Brimacombe KR; Shen M; Boxer MB; Jadhav A; Robinson AP; Podojil JR; Miller SD; Miller RH; Tesar PJ Nature; 2015 Jun; 522(7555):216-20. PubMed ID: 25896324 [TBL] [Abstract][Full Text] [Related]
55. Dysmyelination and reduced myelin basic protein gene expression by oligodendrocytes of SHP-1-deficient mice. Massa PT; Wu C; Fecenko-Tacka K J Neurosci Res; 2004 Jul; 77(1):15-25. PubMed ID: 15197735 [TBL] [Abstract][Full Text] [Related]
56. Mechanisms of remyelination: recent insight from experimental models. Tanaka T; Yoshida S Biomol Concepts; 2014 Aug; 5(4):289-98. PubMed ID: 25372760 [TBL] [Abstract][Full Text] [Related]
57. Neuroscience. A new wrap for neuronal activity? Bechler ME; ffrench-Constant C Science; 2014 May; 344(6183):480-1. PubMed ID: 24786068 [No Abstract] [Full Text] [Related]
58. Central nervous system myelination in mice with deficient expression of Notch1 receptor. Givogri MI; Costa RM; Schonmann V; Silva AJ; Campagnoni AT; Bongarzone ER J Neurosci Res; 2002 Feb; 67(3):309-20. PubMed ID: 11813235 [TBL] [Abstract][Full Text] [Related]
59. Tenascin C and tenascin R similarly prevent the formation of myelin membranes in a RhoA-dependent manner, but antagonistically regulate the expression of myelin basic protein via a separate pathway. Czopka T; Von Holst A; Schmidt G; Ffrench-Constant C; Faissner A Glia; 2009 Dec; 57(16):1790-801. PubMed ID: 19459213 [TBL] [Abstract][Full Text] [Related]
60. Cuprizone-induced demyelination in the rat cerebral cortex and thyroid hormone effects on cortical remyelination. Silvestroff L; Bartucci S; Pasquini J; Franco P Exp Neurol; 2012 May; 235(1):357-67. PubMed ID: 22421533 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]