BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 25808490)

  • 1. Preventing farnesylation of the dynein adaptor Spindly contributes to the mitotic defects caused by farnesyltransferase inhibitors.
    Holland AJ; Reis RM; Niessen S; Pereira C; Andres DA; Spielmann HP; Cleveland DW; Desai A; Gassmann R
    Mol Biol Cell; 2015 May; 26(10):1845-56. PubMed ID: 25808490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel role of farnesylation in targeting a mitotic checkpoint protein, human Spindly, to kinetochores.
    Moudgil DK; Westcott N; Famulski JK; Patel K; Macdonald D; Hang H; Chan GK
    J Cell Biol; 2015 Mar; 208(7):881-96. PubMed ID: 25825516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanism of dynein recruitment to kinetochores by the Rod-Zw10-Zwilch complex and Spindly.
    Gama JB; Pereira C; Simões PA; Celestino R; Reis RM; Barbosa DJ; Pires HR; Carvalho C; Amorim J; Carvalho AX; Cheerambathur DK; Gassmann R
    J Cell Biol; 2017 Apr; 216(4):943-960. PubMed ID: 28320824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Farnesyl transferase inhibitors impair chromosomal maintenance in cell lines and human tumors by compromising CENP-E and CENP-F function.
    Schafer-Hales K; Iaconelli J; Snyder JP; Prussia A; Nettles JH; El-Naggar A; Khuri FR; Giannakakou P; Marcus AI
    Mol Cancer Ther; 2007 Apr; 6(4):1317-28. PubMed ID: 17431110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A conserved CENP-E region mediates BubR1-independent recruitment to the outer corona at mitotic onset.
    Weber J; Legal T; Lezcano AP; Gluszek-Kustusz A; Paterson C; Eibes S; Barisic M; Davies OR; Welburn JPI
    Curr Biol; 2024 Mar; 34(5):1133-1141.e4. PubMed ID: 38354735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NudE regulates dynein at kinetochores but is dispensable for other dynein functions in the
    Simões PA; Celestino R; Carvalho AX; Gassmann R
    J Cell Sci; 2018 Jan; 131(1):. PubMed ID: 29192061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic kinetochore size regulation promotes microtubule capture and chromosome biorientation in mitosis.
    Sacristan C; Ahmad MUD; Keller J; Fermie J; Groenewold V; Tromer E; Fish A; Melero R; Carazo JM; Klumperman J; Musacchio A; Perrakis A; Kops GJ
    Nat Cell Biol; 2018 Jul; 20(7):800-810. PubMed ID: 29915359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of Spindly from microtubule-attached kinetochores controls spindle checkpoint silencing in human cells.
    Gassmann R; Holland AJ; Varma D; Wan X; Civril F; Cleveland DW; Oegema K; Salmon ED; Desai A
    Genes Dev; 2010 May; 24(9):957-71. PubMed ID: 20439434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spindly/CCDC99 is required for efficient chromosome congression and mitotic checkpoint regulation.
    Barisic M; Sohm B; Mikolcevic P; Wandke C; Rauch V; Ringer T; Hess M; Bonn G; Geley S
    Mol Biol Cell; 2010 Jun; 21(12):1968-81. PubMed ID: 20427577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RZZ-Spindly and CENP-E form an integrated platform to recruit dynein to the kinetochore corona.
    Cmentowski V; Ciossani G; d'Amico E; Wohlgemuth S; Owa M; Dynlacht B; Musacchio A
    EMBO J; 2023 Dec; 42(24):e114838. PubMed ID: 37984321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cenp-F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes.
    Vergnolle MA; Taylor SS
    Curr Biol; 2007 Jul; 17(13):1173-9. PubMed ID: 17600710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1.
    Régnier V; Vagnarelli P; Fukagawa T; Zerjal T; Burns E; Trouche D; Earnshaw W; Brown W
    Mol Cell Biol; 2005 May; 25(10):3967-81. PubMed ID: 15870271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polo-like kinase1 is required for recruitment of dynein to kinetochores during mitosis.
    Bader JR; Kasuboski JM; Winding M; Vaughan PS; Hinchcliffe EH; Vaughan KT
    J Biol Chem; 2011 Jun; 286(23):20769-77. PubMed ID: 21507953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Farnesylation of Cenp-F is required for G2/M progression and degradation after mitosis.
    Hussein D; Taylor SS
    J Cell Sci; 2002 Sep; 115(Pt 17):3403-14. PubMed ID: 12154071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation.
    Howell BJ; McEwen BF; Canman JC; Hoffman DB; Farrar EM; Rieder CL; Salmon ED
    J Cell Biol; 2001 Dec; 155(7):1159-72. PubMed ID: 11756470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spindly switch controls anaphase: spindly and RZZ functions in chromosome attachment and mitotic checkpoint control.
    Barisic M; Geley S
    Cell Cycle; 2011 Feb; 10(3):449-56. PubMed ID: 21252629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores.
    Hoffman DB; Pearson CG; Yen TJ; Howell BJ; Salmon ED
    Mol Biol Cell; 2001 Jul; 12(7):1995-2009. PubMed ID: 11451998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Zwint-1 specifies localization of Zeste White 10 to kinetochores and is essential for mitotic checkpoint signaling.
    Wang H; Hu X; Ding X; Dou Z; Yang Z; Shaw AW; Teng M; Cleveland DW; Goldberg ML; Niu L; Yao X
    J Biol Chem; 2004 Dec; 279(52):54590-8. PubMed ID: 15485811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation regulates targeting of cytoplasmic dynein to kinetochores during mitosis.
    Whyte J; Bader JR; Tauhata SB; Raycroft M; Hornick J; Pfister KK; Lane WS; Chan GK; Hinchcliffe EH; Vaughan PS; Vaughan KT
    J Cell Biol; 2008 Dec; 183(5):819-34. PubMed ID: 19029334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitotic control of kinetochore-associated dynein and spindle orientation by human Spindly.
    Chan YW; Fava LL; Uldschmid A; Schmitz MH; Gerlich DW; Nigg EA; Santamaria A
    J Cell Biol; 2009 Jun; 185(5):859-74. PubMed ID: 19468067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.