These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
83 related articles for article (PubMed ID: 2580851)
1. Domain structure of neurofilament subunits as revealed by monoclonal antibodies. Angeletti RH; Trojanowski JQ; Carden M; Schlaepfer WW; Lee VM J Cell Biochem; 1985; 27(2):181-7. PubMed ID: 2580851 [TBL] [Abstract][Full Text] [Related]
2. Monoclonal antibodies to epitopes on different regions of the 200 000 dalton neurofilament protein. Probes for the geometry of the filament. Liem RK; Chin SS; Moraru E; Wang E Exp Cell Res; 1985 Feb; 156(2):419-28. PubMed ID: 2578404 [TBL] [Abstract][Full Text] [Related]
3. The structure, biochemical properties, and immunogenicity of neurofilament peripheral regions are determined by phosphorylation state. Carden MJ; Schlaepfer WW; Lee VM J Biol Chem; 1985 Aug; 260(17):9805-17. PubMed ID: 3926771 [TBL] [Abstract][Full Text] [Related]
4. Developmental expression of neurofilament and glial filament proteins in rat cerebellum. Sawant LA; Hasgekar NN; Vyasarayani LS Int J Dev Biol; 1994 Sep; 38(3):429-37. PubMed ID: 7848826 [TBL] [Abstract][Full Text] [Related]
5. Monoclonal antibodies recognizing epitopes of calretinins: dependence on Ca2+-binding status and differences in antigen accessibility in colon cancer cells. Zimmermann L; Schwaller B Cell Calcium; 2002 Jan; 31(1):13-25. PubMed ID: 11990296 [TBL] [Abstract][Full Text] [Related]
6. Neurofilament protein abnormalities in PC12 cells: comparison with neurofilament proteins of normal cultured rat sympathetic neurons. Lee VM J Neurosci; 1985 Nov; 5(11):3039-46. PubMed ID: 3932605 [TBL] [Abstract][Full Text] [Related]
7. Neurofilament phosphorylation in axons and perikarya: immunofluorescence study of the rat spinal cord and dorsal root ganglia with monoclonal antibodies. Dahl D; Labkovsky B; Bignami A J Comp Neurol; 1988 May; 271(3):445-50. PubMed ID: 3133402 [TBL] [Abstract][Full Text] [Related]
8. Axonal maturation in development--I. Characterization of monoclonal antibodies reacting with axon-specific neurofilament epitopes. Dahl D; Gardner EE; Crosby CJ Int J Dev Neurosci; 1987; 5(1):17-27. PubMed ID: 2459903 [TBL] [Abstract][Full Text] [Related]
9. Immunological relationship between different types of bovine intermediate filaments. Kjörell U; Thornell LE Eur J Cell Biol; 1983 Jan; 29(2):193-9. PubMed ID: 6187571 [TBL] [Abstract][Full Text] [Related]
10. Characterization of epitopes shared by alpha-melanocyte-stimulating hormone (alpha-MSH) and the 150-kD neurofilament protein (NF150): relationship to neurotrophic sequences. Verhaagen J; Edwards PM; Schotman P; Jennekens FG; Gispen WH J Neurosci Res; 1986; 16(4):589-600. PubMed ID: 2432275 [TBL] [Abstract][Full Text] [Related]
11. Relationship between tektins and intermediate filament proteins: an immunological study. Steffen W; Linck RW Cell Motil Cytoskeleton; 1989; 14(3):359-71. PubMed ID: 2582496 [TBL] [Abstract][Full Text] [Related]
12. Novel monoclonal antibodies provide evidence for the in situ existence of a nonphosphorylated form of the largest neurofilament subunit. Lee VM; Carden MJ; Trojanowski JQ J Neurosci; 1986 Mar; 6(3):850-8. PubMed ID: 2420949 [TBL] [Abstract][Full Text] [Related]
13. Antigenic sites on the receptor-binding domain of human adenovirus type 2 fiber. Fender P; Kidd AH; Brebant R; Oberg M; Drouet E; Chroboczek J Virology; 1995 Dec; 214(1):110-7. PubMed ID: 8525605 [TBL] [Abstract][Full Text] [Related]
14. Multiple interactions of aluminum with neurofilament subunits: regulation by phosphate-dependent interactions between C-terminal extensions of the high and middle molecular weight subunits. Shea TB; Beermann ML J Neurosci Res; 1994 Jun; 38(2):160-6. PubMed ID: 8078101 [TBL] [Abstract][Full Text] [Related]
15. Characterization of monoclonal antibodies recognizing different fragments of cartilage oligomeric matrix protein in human body fluids. Vilim V; Lenz ME; Vytasek R; Masuda K; Pavelka K; Kuettner KE; Thonar EJ Arch Biochem Biophys; 1997 May; 341(1):8-16. PubMed ID: 9143347 [TBL] [Abstract][Full Text] [Related]
16. The reactions of monoclonal antibodies with structural proteins of mumps virus. Orvell C J Immunol; 1984 May; 132(5):2622-9. PubMed ID: 6201553 [TBL] [Abstract][Full Text] [Related]
17. Mass spectrometric mapping of protein epitope structures of myocardial infarct markers myoglobin and troponin T. Macht M; Fiedler W; Kürzinger K; Przybylski M Biochemistry; 1996 Dec; 35(49):15633-9. PubMed ID: 8961925 [TBL] [Abstract][Full Text] [Related]
18. Monoclonal antibodies specific for glial fibrillary acidic (GFA) protein and for each of the neurofilament triplet polypeptides. Debus E; Weber K; Osborn M Differentiation; 1983; 25(2):193-203. PubMed ID: 6198232 [TBL] [Abstract][Full Text] [Related]
19. Reactivity of a panel of neurofilament antibodies on phosphorylated and dephosphorylated neurofilaments. Shaw G; Osborn M; Weber K Eur J Cell Biol; 1986 Oct; 42(1):1-9. PubMed ID: 3539605 [TBL] [Abstract][Full Text] [Related]
20. Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Roehrig JT; Bolin RA; Kelly RG Virology; 1998 Jul; 246(2):317-28. PubMed ID: 9657950 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]