These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
700 related articles for article (PubMed ID: 25808609)
1. Laser trapping of colloidal metal nanoparticles. Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609 [TBL] [Abstract][Full Text] [Related]
2. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation. Simmons CS; Knouf EC; Tewari M; Lin LY J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841 [TBL] [Abstract][Full Text] [Related]
3. Plasmonic optical trap having very large active volume realized with nano-ring structure. Kang Z; Zhang H; Lu H; Xu J; Ong HC; Shum P; Ho HP Opt Lett; 2012 May; 37(10):1748-50. PubMed ID: 22627558 [TBL] [Abstract][Full Text] [Related]
4. Plasmonic trapping with a gold nanopillar. Wang K; Crozier KB Chemphyschem; 2012 Aug; 13(11):2639-48. PubMed ID: 22623501 [TBL] [Abstract][Full Text] [Related]
5. Optothermal Manipulations of Colloidal Particles and Living Cells. Lin L; Hill EH; Peng X; Zheng Y Acc Chem Res; 2018 Jun; 51(6):1465-1474. PubMed ID: 29799720 [TBL] [Abstract][Full Text] [Related]
6. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. Zhang W; Huang L; Santschi C; Martin OJ Nano Lett; 2010 Mar; 10(3):1006-11. PubMed ID: 20151698 [TBL] [Abstract][Full Text] [Related]
7. High precision and continuous optical transport using a standing wave optical line trap. Demergis V; Florin EL Opt Express; 2011 Oct; 19(21):20833-48. PubMed ID: 21997093 [TBL] [Abstract][Full Text] [Related]
8. Controlling the position and orientation of single silver nanowires on a surface using structured optical fields. Yan Z; Sweet J; Jureller JE; Guffey MJ; Pelton M; Scherer NF ACS Nano; 2012 Sep; 6(9):8144-55. PubMed ID: 22900883 [TBL] [Abstract][Full Text] [Related]
9. Dark-field optical tweezers for nanometrology of metallic nanoparticles. Pearce K; Wang F; Reece PJ Opt Express; 2011 Dec; 19(25):25559-69. PubMed ID: 22273949 [TBL] [Abstract][Full Text] [Related]
10. Optical trapping of nanoparticles. Bergeron J; Zehtabi-Oskuie A; Ghaffari S; Pang Y; Gordon R J Vis Exp; 2013 Jan; (71):e4424. PubMed ID: 23354173 [TBL] [Abstract][Full Text] [Related]
11. Engineering plasmonic metal colloids through composition and structural design. Motl NE; Smith AF; DeSantis CJ; Skrabalak SE Chem Soc Rev; 2014 Jun; 43(11):3823-34. PubMed ID: 24352187 [TBL] [Abstract][Full Text] [Related]
12. Potential energy profile of colloidal nanoparticles in optical confinement. Fu J; Zhan Q; Lim MY; Li Z; Ou-Yang HD Opt Lett; 2013 Oct; 38(20):3995-8. PubMed ID: 24321903 [TBL] [Abstract][Full Text] [Related]
13. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Jain PK; Huang X; El-Sayed IH; El-Sayed MA Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366 [TBL] [Abstract][Full Text] [Related]
14. Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives. Urban AS; Carretero-Palacios S; Lutich AA; Lohmüller T; Feldmann J; Jäckel F Nanoscale; 2014 May; 6(9):4458-74. PubMed ID: 24664273 [TBL] [Abstract][Full Text] [Related]
16. New opto-plasmonic tweezers for manipulation and rotation of biological cells--design and fabrication. Miao X; Lin LY Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4318-21. PubMed ID: 17946622 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and Operation of a Nano-Optical Conveyor Belt. Ryan J; Zheng Y; Hansen P; Hesselink L J Vis Exp; 2015 Aug; (102):e52842. PubMed ID: 26381708 [TBL] [Abstract][Full Text] [Related]
18. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers. Hong C; Yang S; Ndukaife JC Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919 [TBL] [Abstract][Full Text] [Related]