These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 2580871)

  • 41. Localization of fibroblast growth factor I (acid fibroblast growth factor) and its mRNA in the bovine mammary gland during mammogenesis, lactation and involution.
    Sinowatz F; Schams D; Habermann F; Berisha B; Vermehren M
    Anat Histol Embryol; 2006 Jun; 35(3):202-7. PubMed ID: 16677217
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamics of somatic cell counts and intramammary infections across the dry period.
    Pantoja JC; Hulland C; Ruegg PL
    Prev Vet Med; 2009 Jul; 90(1-2):43-54. PubMed ID: 19409630
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Changes in the bovine teat canal during the nonlactating period and early lactation, as measured by teat canal impressions.
    Oldham ER; Eberhart RJ; Lange AL; Bruso SL
    Am J Vet Res; 1991 Dec; 52(12):2075-9. PubMed ID: 1789526
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Local over-expression of prolactin in differentiating mouse mammary gland induces functional defects and benign lesions, but no carcinoma.
    Manhès C; Kayser C; Bertheau P; Kelder B; Kopchick JJ; Kelly PA; Touraine P; Goffin V
    J Endocrinol; 2006 Aug; 190(2):271-85. PubMed ID: 16899561
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Somatic cell count status across the dry period as a risk factor for the development of clinical mastitis in the subsequent lactation.
    Pantoja JC; Hulland C; Ruegg PL
    J Dairy Sci; 2009 Jan; 92(1):139-48. PubMed ID: 19109272
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Total and differential somatic cell counts in secretions from noninfected bovine mammary glands: the early nonlactating period.
    McDonald JS; Anderson AJ
    Am J Vet Res; 1981 Aug; 42(8):1360-5. PubMed ID: 7294470
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of a shortened dry period on intramammary infections during the subsequent lactation.
    Church GT; Fox LK; Gaskins CT; Hancock DD; Gay JM
    J Dairy Sci; 2008 Nov; 91(11):4219-25. PubMed ID: 18946126
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of an enhanced vitamin A intake during the dry period on retinoids, lactoferrin, IGF system, mammary gland epithelial cell apoptosis, and subsequent lactation in dairy cows.
    Puvogel G; Baumrucker CR; Sauerwein H; Rühl R; Ontsouka E; Hammon HM; Blum JW
    J Dairy Sci; 2005 May; 88(5):1785-800. PubMed ID: 15829672
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Milk plasmin during bovine mammary involution that has been accelerated by estrogen.
    Athie F; Bachman KC; Head HH; Hayen MJ; Wilcox CJ
    J Dairy Sci; 1997 Aug; 80(8):1561-8. PubMed ID: 9276794
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Udder health implications of premature bovine mammary regression. I. Clinical, subclinical and reducing-sugar changes in milk during 168 hours of suspended milking in mid-lactation.
    Giesecke WH; Korybut-Woroniecki PA; Kowalski ZE
    Onderstepoort J Vet Res; 1990 Mar; 57(1):25-35. PubMed ID: 2338996
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Progressive pathology of severe Escherichia coli mastitis in dairy cows.
    Hill AW; Frost AJ; Brooker BE
    Res Vet Sci; 1984 Sep; 37(2):179-87. PubMed ID: 6390590
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitative estimates of mammary growth during various physiological states: a review.
    Tucker HA
    J Dairy Sci; 1987 Sep; 70(9):1958-66. PubMed ID: 3312321
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cellular mechanisms in regulating mammary cell turnover during lactation and dry period in dairy cows.
    Nørgaard JV; Theil PK; Sørensen MT; Sejrsen K
    J Dairy Sci; 2008 Jun; 91(6):2319-27. PubMed ID: 18487654
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Association of milk yield and infection status at dry-off with intramammary infections at subsequent calving.
    Newman KA; Rajala-Schultz PJ; Degraves FJ; Lakritz J
    J Dairy Res; 2010 Feb; 77(1):99-106. PubMed ID: 19906321
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metabolic adaptations in mammary gland during the declining phase of lactation.
    Wilde CJ; Knight CH
    J Dairy Sci; 1989 Jun; 72(6):1679-92. PubMed ID: 2668363
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Amyloid in the corpora amylacea of the rat mammary gland.
    Beems RB; Gruys E; Spit BJ
    Vet Pathol; 1978 May; 15(3):347-52. PubMed ID: 685082
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultrastructural study of corpora amylacea in human thyroid gland.
    Sun CN
    Exp Pathol; 1983; 23(4):219-25. PubMed ID: 6307733
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Casein related amyloid, characterization of a new and unique amyloid protein isolated from bovine corpora amylacea.
    Niewold TA; Murphy CL; Hulskamp-Koch CA; Tooten PC; Gruys E
    Amyloid; 1999 Dec; 6(4):244-9. PubMed ID: 10611944
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Amyloid in canine mammary tumors.
    Vos JH; Gruys E
    Vet Pathol; 1985 Jul; 22(4):347-54. PubMed ID: 3898539
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Localized amyloidosis in canine mammary tumors.
    Taniyama H; Kitamura A; Kagawa Y; Hirayama K; Yoshino T; Kamiya S
    Vet Pathol; 2000 Jan; 37(1):104-7. PubMed ID: 10643991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.