BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25808756)

  • 1. Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires.
    Cheng Y; Wang R; Sun J; Gao L
    ACS Nano; 2015 Apr; 9(4):3887-95. PubMed ID: 25808756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraordinarily High Conductivity of Stretchable Fibers of Polyurethane and Silver Nanoflowers.
    Ma R; Kang B; Cho S; Choi M; Baik S
    ACS Nano; 2015 Nov; 9(11):10876-86. PubMed ID: 26485308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Stretchable Conductive Fibers from Few-Walled Carbon Nanotubes Coated on Poly(m-phenylene isophthalamide) Polymer Core/Shell Structures.
    Jiang S; Zhang H; Song S; Ma Y; Li J; Lee GH; Han Q; Liu J
    ACS Nano; 2015 Oct; 9(10):10252-7. PubMed ID: 26390200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres.
    Park M; Im J; Shin M; Min Y; Park J; Cho H; Park S; Shim MB; Jeon S; Chung DY; Bae J; Park J; Jeong U; Kim K
    Nat Nanotechnol; 2012 Dec; 7(12):803-9. PubMed ID: 23178335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrastretchable Electrically Self-Healing Conductors Based on Silver Nanowire/Liquid Metal Microcapsule Nanocomposites.
    Lin Y; Fang T; Bai C; Sun Y; Yang C; Hu G; Guo H; Qiu W; Huang W; Wang L; Tao Z; Lu YQ; Kong D
    Nano Lett; 2023 Dec; 23(23):11174-11183. PubMed ID: 38047765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of highly stretchable conductors via morphological control of carbon nanotube network.
    Lin L; Liu S; Fu S; Zhang S; Deng H; Fu Q
    Small; 2013 Nov; 9(21):3620-9. PubMed ID: 23630114
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly conductive and stretchable Ag nanowire/carbon nanotube hybrid conductors.
    Woo JY; Kim KK; Lee J; Kim JT; Han CS
    Nanotechnology; 2014 Jul; 25(28):285203. PubMed ID: 24971604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors.
    Park J; Wang S; Li M; Ahn C; Hyun JK; Kim DS; Kim DK; Rogers JA; Huang Y; Jeon S
    Nat Commun; 2012 Jun; 3():916. PubMed ID: 22735444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive and ultrastretchable electrically self-healing conductors.
    Li Y; Fang T; Zhang J; Zhu H; Sun Y; Wang S; Lu Y; Kong D
    Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2300953120. PubMed ID: 37253015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-stacked carbon composites employing networked electrical intra-pathways for direct-printable, extremely stretchable conductors.
    Chae C; Seo YH; Jo Y; Kim KW; Song W; An KS; Choi S; Choi Y; Lee SS; Jeong S
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4109-17. PubMed ID: 25647807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programmable and Weldable Superelastic EGaIn/TPU Composite Fiber by Wet Spinning for Flexible Electronics.
    Zhou J; Zhao S; Tang L; Zhang D; Sheng B
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38031357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly stretchable and mechanically stable transparent electrode based on composite of silver nanowires and polyurethane-urea.
    Kim DH; Yu KC; Kim Y; Kim JW
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15214-22. PubMed ID: 26135228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal-Like Stretchable Nanocomposite Using Locally-Bundled Nanowires for Skin-Mountable Devices.
    Jung D; Kim Y; Lee H; Jung S; Park C; Hyeon T; Kim DH
    Adv Mater; 2023 Nov; 35(44):e2303458. PubMed ID: 37591512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous Stretchable Conductivity Using an Engineered Tricot Weave.
    Lee YH; Kim Y; Lee TI; Lee I; Shin J; Lee HS; Kim TS; Choi JW
    ACS Nano; 2015 Dec; 9(12):12214-23. PubMed ID: 26493327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stretchable Fibers with Highly Conductive Surfaces and Robust Electromechanical Performances for Electronic Textiles.
    Yang Y; Liu J; Chen G; Gao A; Wang J; Wang J
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):6122-6132. PubMed ID: 38272468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stretchable Silver Nanowire-Elastomer Composite Microelectrodes with Tailored Electrical Properties.
    Martinez V; Stauffer F; Adagunodo MO; Forro C; Vörös J; Larmagnac A
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13467-75. PubMed ID: 26068389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stretchable Wire-Shaped Asymmetric Supercapacitors Based on Pristine and MnO2 Coated Carbon Nanotube Fibers.
    Xu P; Wei B; Cao Z; Zheng J; Gong K; Li F; Yu J; Li Q; Lu W; Byun JH; Kim BS; Yan Y; Chou TW
    ACS Nano; 2015 Jun; 9(6):6088-96. PubMed ID: 25961131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel.
    Lee J; Lee P; Lee H; Lee D; Lee SS; Ko SH
    Nanoscale; 2012 Oct; 4(20):6408-14. PubMed ID: 22952107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes.
    Liang J; Li L; Tong K; Ren Z; Hu W; Niu X; Chen Y; Pei Q
    ACS Nano; 2014 Feb; 8(2):1590-600. PubMed ID: 24471886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.