These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25808962)

  • 21. Nonmuscle myosin II-B (myh10) expression analysis during zebrafish embryonic development.
    Huang Y; Wang X; Wang X; Xu M; Liu M; Liu D
    Gene Expr Patterns; 2013 Oct; 13(7):265-70. PubMed ID: 23665442
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genotyping of single nucleotide polymorphisms by melting curve analysis using thin film semi-transparent heaters integrated in a lab-on-foil system.
    Ohlander A; Zilio C; Hammerle T; Zelenin S; Klink G; Chiari M; Bock K; Russom A
    Lab Chip; 2013 Jun; 13(11):2075-82. PubMed ID: 23592049
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fish'n ChIPs: chromatin immunoprecipitation in the zebrafish embryo.
    Lindeman LC; Vogt-Kielland LT; Aleström P; Collas P
    Methods Mol Biol; 2009; 567():75-86. PubMed ID: 19588086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Insulin-like growth factor-2 regulates early neural and cardiovascular system development in zebrafish embryos.
    Hartnett L; Glynn C; Nolan CM; Grealy M; Byrnes L
    Int J Dev Biol; 2010; 54(4):573-83. PubMed ID: 19757379
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptome dynamics and diversity in the early zebrafish embryo.
    Aanes H; Collas P; Aleström P
    Brief Funct Genomics; 2014 Mar; 13(2):95-105. PubMed ID: 24335756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Live Metabolic Profile Analysis of Zebrafish Embryos Using a Seahorse XF 24 Extracellular Flux Analyzer.
    Bond ST; McEwen KA; Yoganantharajah P; Gibert Y
    Methods Mol Biol; 2018; 1797():393-401. PubMed ID: 29896705
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Small ubiquitin-related modifier paralogs are indispensable but functionally redundant during early development of zebrafish.
    Yuan H; Zhou J; Deng M; Liu X; Le Bras M; de The H; Chen SJ; Chen Z; Liu TX; Zhu J
    Cell Res; 2010 Feb; 20(2):185-96. PubMed ID: 19704416
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proteomics of early zebrafish embryos.
    Link V; Shevchenko A; Heisenberg CP
    BMC Dev Biol; 2006 Jan; 6():1. PubMed ID: 16412219
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic interface technology based on stereolithography for glass-based lab-on-a-chips.
    Han SI; Han KH
    Methods Mol Biol; 2013; 949():169-84. PubMed ID: 23329443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos.
    Lindeman LC; Winata CL; Aanes H; Mathavan S; Alestrom P; Collas P
    Int J Dev Biol; 2010; 54(5):803-13. PubMed ID: 20336603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vivo real-time visualization of leukocytes and intracellular hydrogen peroxide levels during a zebrafish acute inflammation assay.
    Pase L; Nowell CJ; Lieschke GJ
    Methods Enzymol; 2012; 506():135-56. PubMed ID: 22341223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V; Blaikie RJ; David T
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transport of live yeast and zebrafish embryo on a droplet digital microfluidic platform.
    Son SU; Garrell RL
    Lab Chip; 2009 Aug; 9(16):2398-401. PubMed ID: 19636473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic oxygen imaging using integrated optical sensor layers and a color camera.
    Ungerböck B; Charwat V; Ertl P; Mayr T
    Lab Chip; 2013 Apr; 13(8):1593-601. PubMed ID: 23443957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A microfluidic system for studying the behavior of zebrafish larvae under acute hypoxia.
    Erickstad M; Hale LA; Chalasani SH; Groisman A
    Lab Chip; 2015 Feb; 15(3):857-66. PubMed ID: 25490410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective in situ functionalization of biosensors on LOC devices using laminar co-flow.
    Parra-Cabrera C; Sporer C; Rodriguez-Villareal I; Rodriguez-Trujillo R; Homs-Corbera A; Samitier J
    Lab Chip; 2012 Oct; 12(20):4143-50. PubMed ID: 22868270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic approach to evaluate specificity of small molecule drug candidates inhibiting PLK1 using zebrafish.
    Zhong H; Xin S; Zhao Y; Lu J; Li S; Gong J; Yang Z; Lin S
    Mol Biosyst; 2010 Aug; 6(8):1463-8. PubMed ID: 20625580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Intraovarian transplantation of stage I-II follicles results in viable zebrafish embryos.
    Csenki Z; Zaucker A; Kovács B; Hadzhiev Y; Hegyi A; Lefler KK; Müller T; Kovács R; Urbányi B; Váradi L; Müller F
    Int J Dev Biol; 2010; 54(4):585-9. PubMed ID: 20209431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a Microfluidic Chip Powered by EWOD for In Vitro Manipulation of Bovine Embryos.
    Karcz A; Van Soom A; Smits K; Van Vlierberghe S; Verplancke R; Pascottini OB; Van den Abbeel E; Vanfleteren J
    Biosensors (Basel); 2023 Mar; 13(4):. PubMed ID: 37185494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polyacrylamide Bead Sensors for in vivo Quantification of Cell-Scale Stress in Zebrafish Development.
    Träber N; Uhlmann K; Girardo S; Kesavan G; Wagner K; Friedrichs J; Goswami R; Bai K; Brand M; Werner C; Balzani D; Guck J
    Sci Rep; 2019 Nov; 9(1):17031. PubMed ID: 31745109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.