These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25809009)

  • 1. Template Electrosynthesis of High-Performance Graphene Microengines.
    Martín A; Jurado-Sánchez B; Escarpa A; Wang J
    Small; 2015 Aug; 11(29):3568-74. PubMed ID: 25809009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes.
    Gao W; Sattayasamitsathit S; Orozco J; Wang J
    J Am Chem Soc; 2011 Aug; 133(31):11862-4. PubMed ID: 21749138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Template-assisted fabrication of salt-independent catalytic tubular microengines.
    Manesh KM; Cardona M; Yuan R; Clark M; Kagan D; Balasubramanian S; Wang J
    ACS Nano; 2010 Apr; 4(4):1799-804. PubMed ID: 20230041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast Nanocrystals Decorated Micromotors for On-Site Dynamic Chemical Processes.
    Jurado-Sánchez B; Wang J; Escarpa A
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19618-25. PubMed ID: 27387459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-propelled activated carbon Janus micromotors for efficient water purification.
    Jurado-Sánchez B; Sattayasamitsathit S; Gao W; Santos L; Fedorak Y; Singh VV; Orozco J; Galarnyk M; Wang J
    Small; 2015 Jan; 11(4):499-506. PubMed ID: 25207503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient bubble propulsion of polymer-based microengines in real-life environments.
    Gao W; Sattayasamitsathit S; Orozco J; Wang J
    Nanoscale; 2013 Oct; 5(19):8909-14. PubMed ID: 23942761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media.
    Gao W; Uygun A; Wang J
    J Am Chem Soc; 2012 Jan; 134(2):897-900. PubMed ID: 22188367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic iridium-based Janus micromotors powered by ultralow levels of chemical fuels.
    Gao W; Pei A; Dong R; Wang J
    J Am Chem Soc; 2014 Feb; 136(6):2276-9. PubMed ID: 24475997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bubble-propelled micromotors for enhanced transport of passive tracers.
    Orozco J; Jurado-Sánchez B; Wagner G; Gao W; Vazquez-Duhalt R; Sattayasamitsathit S; Galarnyk M; Cortés A; Saintillan D; Wang J
    Langmuir; 2014 May; 30(18):5082-7. PubMed ID: 24754608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pt-Free microengines at extremely low peroxide levels.
    Ye H; Ma G; Kang J; Sun H; Wang S
    Chem Commun (Camb); 2018 May; 54(37):4653-4656. PubMed ID: 29623976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading.
    Wang H; Sofer Z; Eng AY; Pumera M
    Chemistry; 2014 Nov; 20(46):14946-50. PubMed ID: 25293511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-speed graphene@Ag-MnO
    Ye H; Kang J; Ma G; Sun H; Wang S
    J Colloid Interface Sci; 2018 Oct; 528():271-280. PubMed ID: 29859452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-Component TiO2 Tubular Microengines with Motion Controlled by Light-Induced Bubbles.
    Mou F; Li Y; Chen C; Li W; Yin Y; Ma H; Guan J
    Small; 2015 Jun; 11(21):2564-70. PubMed ID: 25627213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasound-modulated bubble propulsion of chemically powered microengines.
    Xu T; Soto F; Gao W; Garcia-Gradilla V; Li J; Zhang X; Wang J
    J Am Chem Soc; 2014 Jun; 136(24):8552-5. PubMed ID: 24898345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer-based tubular microbots: role of composition and preparation.
    Gao W; Sattayasamitsathit S; Uygun A; Pei A; Ponedal A; Wang J
    Nanoscale; 2012 Apr; 4(7):2447-53. PubMed ID: 22374514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manganese Oxide-Based Chemically Powered Micromotors.
    Safdar M; Wani OM; Jänis J
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25580-5. PubMed ID: 26551302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic Layer Deposition of Pt Nanoparticles for Microengine with Promoted Catalytic Motion.
    Jiang C; Huang G; Ding SJ; Dong H; Men C; Mei Y
    Nanoscale Res Lett; 2016 Dec; 11(1):289. PubMed ID: 27295257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamics and propulsion mechanism of self-propelled catalytic micromotors: model and experiment.
    Li L; Wang J; Li T; Song W; Zhang G
    Soft Matter; 2014 Oct; 10(38):7511-8. PubMed ID: 25080889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ZnO/ZnO
    Pourrahimi AM; Villa K; Ying Y; Sofer Z; Pumera M
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42688-42697. PubMed ID: 30500156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Nanomotors to Micromotors: The Influence of the Size of an Autonomous Bubble-Propelled Device upon Its Motion.
    Wang H; Moo JG; Pumera M
    ACS Nano; 2016 May; 10(5):5041-50. PubMed ID: 27135613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.