These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 25809158)

  • 21. Easy Come, Easy Go: Capillary Forces Enable Rapid Refilling of Embolized Primary Xylem Vessels.
    Rolland V; Bergstrom DM; Lenné T; Bryant G; Chen H; Wolfe J; Holbrook NM; Stanton DE; Ball MC
    Plant Physiol; 2015 Aug; 168(4):1636-47. PubMed ID: 26091819
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The proteasome is responsible for caspase-3-like activity during xylem development.
    Han JJ; Lin W; Oda Y; Cui KM; Fukuda H; He XQ
    Plant J; 2012 Oct; 72(1):129-41. PubMed ID: 22680239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive genome-wide analysis of the Aux/IAA gene family in Eucalyptus: evidence for the role of EgrIAA4 in wood formation.
    Yu H; Soler M; San Clemente H; Mila I; Paiva JA; Myburg AA; Bouzayen M; Grima-Pettenati J; Cassan-Wang H
    Plant Cell Physiol; 2015 Apr; 56(4):700-14. PubMed ID: 25577568
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Boron deficiency results in early repression of a cytokinin receptor gene and abnormal cell differentiation in the apical root meristem of Arabidopsis thaliana.
    Abreu I; Poza L; Bonilla I; Bolaños L
    Plant Physiol Biochem; 2014 Apr; 77():117-21. PubMed ID: 24589475
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Xylem cell death: emerging understanding of regulation and function.
    Bollhöner B; Prestele J; Tuominen H
    J Exp Bot; 2012 Feb; 63(3):1081-94. PubMed ID: 22213814
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vascular tissue development in plants.
    Fukuda H; Ohashi-Ito K
    Curr Top Dev Biol; 2019; 131():141-160. PubMed ID: 30612615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overexpression of constitutively active Arabidopsis RabG3b promotes xylem development in transgenic poplars.
    Kwon SI; Cho HJ; Lee JS; Jin H; Shin SJ; Kwon M; Noh EW; Park OK
    Plant Cell Environ; 2011 Dec; 34(12):2212-24. PubMed ID: 21895694
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Auxin-mediated Aux/IAA-ARF-HB signaling cascade regulates secondary xylem development in Populus.
    Xu C; Shen Y; He F; Fu X; Yu H; Lu W; Li Y; Li C; Fan D; Wang HC; Luo K
    New Phytol; 2019 Apr; 222(2):752-767. PubMed ID: 30582614
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Eucalyptus linker histone variant EgH1.3 cooperates with the transcription factor EgMYB1 to control lignin biosynthesis during wood formation.
    Soler M; Plasencia A; Larbat R; Pouzet C; Jauneau A; Rivas S; Pesquet E; Lapierre C; Truchet I; Grima-Pettenati J
    New Phytol; 2017 Jan; 213(1):287-299. PubMed ID: 27500520
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Populus NST/SND orthologs are key regulators of secondary cell wall formation in wood fibers, phloem fibers and xylem ray parenchyma cells.
    Takata N; Awano T; Nakata MT; Sano Y; Sakamoto S; Mitsuda N; Taniguchi T
    Tree Physiol; 2019 Apr; 39(4):514-525. PubMed ID: 30806711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signalling via miR165.
    Ramachandran P; Wang G; Augstein F; de Vries J; Carlsbecker A
    Development; 2018 Feb; 145(3):. PubMed ID: 29361572
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cytoskeletal organization during xylem cell differentiation.
    Oda Y; Hasezawa S
    J Plant Res; 2006 May; 119(3):167-77. PubMed ID: 16570127
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Avoiding transport bottlenecks in an expanding root system: xylem vessel development in fibrous and pioneer roots under field conditions.
    Bagniewska-Zadworna A; Byczyk J; Eissenstat DM; Oleksyn J; Zadworny M
    Am J Bot; 2012 Sep; 99(9):1417-26. PubMed ID: 22917946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A global analysis of xylem vessel length in woody plants.
    Jacobsen AL; Pratt RB; Tobin MF; Hacke UG; Ewers FW
    Am J Bot; 2012 Oct; 99(10):1583-91. PubMed ID: 22965850
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coping With Water Limitation: Hormones That Modify Plant Root Xylem Development.
    Ramachandran P; Augstein F; Nguyen V; Carlsbecker A
    Front Plant Sci; 2020; 11():570. PubMed ID: 32499804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scaling relationships and vessel packing in petioles.
    Ray DM; Jones CS
    Am J Bot; 2018 Apr; 105(4):667-676. PubMed ID: 29664993
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Class III HD-ZIPs govern vascular cell fate: an HD view on patterning and differentiation.
    Ramachandran P; Carlsbecker A; Etchells JP
    J Exp Bot; 2017 Jan; 68(1):55-69. PubMed ID: 27794018
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High levels of auxin signalling define the stem-cell organizer of the vascular cambium.
    Smetana O; Mäkilä R; Lyu M; Amiryousefi A; Sánchez Rodríguez F; Wu MF; Solé-Gil A; Leal Gavarrón M; Siligato R; Miyashima S; Roszak P; Blomster T; Reed JW; Broholm S; Mähönen AP
    Nature; 2019 Jan; 565(7740):485-489. PubMed ID: 30626967
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-wide transcriptional profiling reveals molecular signatures of secondary xylem differentiation in Populus tomentosa.
    Yang XH; Li XG; Li BL; Zhang DQ
    Genet Mol Res; 2014 Nov; 13(4):9489-504. PubMed ID: 25501159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A core mechanism for specifying root vascular patterning can replicate the anatomical variation seen in diverse plant species.
    Mellor N; Vaughan-Hirsch J; Kümpers BMC; Help-Rinta-Rahko H; Miyashima S; Mähönen AP; Campilho A; King JR; Bishopp A
    Development; 2019 Mar; 146(6):. PubMed ID: 30858228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.