These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 25809158)

  • 61. The Arabidopsis polyamine oxidase/dehydrogenase 5 interferes with cytokinin and auxin signaling pathways to control xylem differentiation.
    Alabdallah O; Ahou A; Mancuso N; Pompili V; Macone A; Pashkoulov D; Stano P; Cona A; Angelini R; Tavladoraki P
    J Exp Bot; 2017 Feb; 68(5):997-1012. PubMed ID: 28199662
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The MeJA-inducible copper amine oxidase AtAO1 is expressed in xylem tissue and guard cells.
    Ghuge SA; Carucci A; Rodrigues-Pousada RA; Tisi A; Franchi S; Tavladoraki P; Angelini R; Cona A
    Plant Signal Behav; 2015; 10(10):e1073872. PubMed ID: 26241131
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Growth modulation effects of CBM2a under the control of AtEXP4 and CaMV35S promoters in Arabidopsis thaliana, Nicotiana tabacum and Eucalyptus camaldulensis.
    Keadtidumrongkul P; Suttangkakul A; Pinmanee P; Pattana K; Kittiwongwattana C; Apisitwanich S; Vuttipongchaikij S
    Transgenic Res; 2017 Aug; 26(4):447-463. PubMed ID: 28349287
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Wood structure and function change with maturity: Age of the vascular cambium is associated with xylem changes in current-year growth.
    Rodriguez-Zaccaro FD; Valdovinos-Ayala J; Percolla MI; Venturas MD; Pratt RB; Jacobsen AL
    Plant Cell Environ; 2019 Jun; 42(6):1816-1831. PubMed ID: 30707440
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Overexpression of the cytosolic cytokinin oxidase/dehydrogenase (CKX7) from Arabidopsis causes specific changes in root growth and xylem differentiation.
    Köllmer I; Novák O; Strnad M; Schmülling T; Werner T
    Plant J; 2014 May; 78(3):359-71. PubMed ID: 24528491
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Regulation of xylem cell fate.
    Kondo Y; Tamaki T; Fukuda H
    Front Plant Sci; 2014; 5():315. PubMed ID: 25071798
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Novel molecular insights into the machinery driving secondary cell wall synthesis and patterning.
    Saß A; Schneider R
    Curr Opin Plant Biol; 2024 Oct; 81():102614. PubMed ID: 39142254
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Evolution of development of vascular cambia and secondary growth.
    Spicer R; Groover A
    New Phytol; 2010 May; 186(3):577-92. PubMed ID: 20522166
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Understanding the root xylem plasticity for designing resilient crops.
    Cornelis S; Hazak O
    Plant Cell Environ; 2022 Mar; 45(3):664-676. PubMed ID: 34971462
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Pathogen Adaptation to the Xylem Environment.
    De La Fuente L; Merfa MV; Cobine PA; Coleman JJ
    Annu Rev Phytopathol; 2022 Aug; 60():163-186. PubMed ID: 35472277
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Temperature and Turgor "Limitation" and Environmental "Control" in Xylem Biology and Dendrochronology.
    Segovia-Rivas A; Olson ME
    Integr Comp Biol; 2023 Dec; 63(6):1364-1375. PubMed ID: 37550219
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Structural Characteristics of Reaction Tissue in Plants.
    Liu L; Luan Y; Fang C; Hu J; Chang S; Fei B
    Plants (Basel); 2023 Apr; 12(8):. PubMed ID: 37111927
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Regulatory effect of cytokinin on secondary xylem fiber formation in an in vivo system.
    Saks Y; Feigenbaum P; Aloni R
    Plant Physiol; 1984 Nov; 76(3):638-42. PubMed ID: 16663898
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Vascular Cambium Development.
    Nieminen K; Blomster T; Helariutta Y; Mähönen AP
    Arabidopsis Book; 2015; 13():e0177. PubMed ID: 26078728
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The identification and characterization of specific ARF-Aux/IAA regulatory modules in plant growth and development.
    Krogan NT; Berleth T
    Plant Signal Behav; 2015; 10(4):e992748. PubMed ID: 25830553
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Arabidopsis PME17 Activity can be Controlled by Pectin Methylesterase Inhibitor4.
    Sénéchal F; Mareck A; Marcelo P; Lerouge P; Pelloux J
    Plant Signal Behav; 2015; 10(2):e983351. PubMed ID: 25826258
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis.
    Wang B; Chu J; Yu T; Xu Q; Sun X; Yuan J; Xiong G; Wang G; Wang Y; Li J
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4821-6. PubMed ID: 25831515
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Plant vascular development: from early specification to differentiation.
    De Rybel B; Mähönen AP; Helariutta Y; Weijers D
    Nat Rev Mol Cell Biol; 2016 Jan; 17(1):30-40. PubMed ID: 26580717
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Auxin influx carriers control vascular patterning and xylem differentiation in Arabidopsis thaliana.
    Fàbregas N; Formosa-Jordan P; Confraria A; Siligato R; Alonso JM; Swarup R; Bennett MJ; Mähönen AP; Caño-Delgado AI; Ibañes M
    PLoS Genet; 2015 Apr; 11(4):e1005183. PubMed ID: 25922946
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Analysis of cell division patterns in the Arabidopsis shoot apical meristem.
    Shapiro BE; Tobin C; Mjolsness E; Meyerowitz EM
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4815-20. PubMed ID: 25825722
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.