These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
663 related articles for article (PubMed ID: 25809455)
1. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering. Zhang HX; Xiao GY; Wang X; Dong ZG; Ma ZY; Li L; Li YH; Pan X; Nie L J Biomed Mater Res A; 2015 Oct; 103(10):3250-8. PubMed ID: 25809455 [TBL] [Abstract][Full Text] [Related]
2. Efficacy of the biomaterials 3wt%-nanostrontium-hydroxyapatite-enhanced calcium phosphate cement (nanoSr-CPC) and nanoSr-CPC-incorporated simvastatin-loaded poly(lactic-co-glycolic-acid) microspheres in osteogenesis improvement: An explorative multi-phase experimental in vitro/vivo study. Masaeli R; Jafarzadeh Kashi TS; Dinarvand R; Rakhshan V; Shahoon H; Hooshmand B; Mashhadi Abbas F; Raz M; Rajabnejad A; Eslami H; Khoshroo K; Tahriri M; Tayebi L Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():171-83. PubMed ID: 27612702 [TBL] [Abstract][Full Text] [Related]
3. The biocompatibility of calcium phosphate cements containing alendronate-loaded PLGA microparticles in vitro. Li YH; Wang ZD; Wang W; Ding CW; Zhang HX; Li JM Exp Biol Med (Maywood); 2015 Nov; 240(11):1465-71. PubMed ID: 25877763 [TBL] [Abstract][Full Text] [Related]
4. In vitro and in vivo evaluation of calcium phosphate composite scaffolds containing BMP-VEGF loaded PLGA microspheres for the treatment of avascular necrosis of the femoral head. Zhang HX; Zhang XP; Xiao GY; Hou Y; Cheng L; Si M; Wang SS; Li YH; Nie L Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():298-307. PubMed ID: 26706534 [TBL] [Abstract][Full Text] [Related]
5. In vitro degradation, biocompatibility, and in vivo osteogenesis of poly(lactic-co-glycolic acid)/calcium phosphate cement scaffold with unidirectional lamellar pore structure. He F; Ye J J Biomed Mater Res A; 2012 Dec; 100(12):3239-50. PubMed ID: 22733543 [TBL] [Abstract][Full Text] [Related]
6. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130 [TBL] [Abstract][Full Text] [Related]
7. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content. He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617 [TBL] [Abstract][Full Text] [Related]
8. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin. Xie XH; Wang XL; Zhang G; He YX; Leng Y; Tang TT; Pan X; Qin L J Tissue Eng Regen Med; 2015 Aug; 9(8):961-72. PubMed ID: 23255530 [TBL] [Abstract][Full Text] [Related]
9. Preparation and property of a novel bone graft composite consisting of rhBMP-2 loaded PLGA microspheres and calcium phosphate cement. Fei Z; Hu Y; Wu D; Wu H; Lu R; Bai J; Song H J Mater Sci Mater Med; 2008 Mar; 19(3):1109-16. PubMed ID: 17701313 [TBL] [Abstract][Full Text] [Related]
10. Porous Chitosan/Nano-Hydroxyapatite Composite Scaffolds Incorporating Simvastatin-Loaded PLGA Microspheres for Bone Repair. Li Y; Zhang Z; Zhang Z Cells Tissues Organs; 2018; 205(1):20-31. PubMed ID: 29393155 [TBL] [Abstract][Full Text] [Related]
11. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties. Filipowska J; Pawlik J; Cholewa-Kowalska K; Tylko G; Pamula E; Niedzwiedzki L; Szuta M; Laczka M; Osyczka AM Biomed Mater; 2014 Oct; 9(6):065001. PubMed ID: 25329328 [TBL] [Abstract][Full Text] [Related]
12. Microsphere-based drug releasing scaffolds for inducing osteogenesis of human mesenchymal stem cells in vitro. Shi X; Wang Y; Varshney RR; Ren L; Gong Y; Wang DA Eur J Pharm Sci; 2010 Jan; 39(1-3):59-67. PubMed ID: 19895885 [TBL] [Abstract][Full Text] [Related]
13. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study. Chen SH; Wang XL; Xie XH; Zheng LZ; Yao D; Wang DP; Leng Y; Zhang G; Qin L Acta Biomater; 2012 Aug; 8(8):3128-37. PubMed ID: 22543006 [TBL] [Abstract][Full Text] [Related]
14. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2. Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062 [TBL] [Abstract][Full Text] [Related]
15. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering. Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051 [TBL] [Abstract][Full Text] [Related]
16. [Experimental study of tissue-engineered bone constructed with simvastatin carried by PLGA/CPC and bone marrow stromal cells]. Han XQ; Han XQ; Dong ZH; Yu XR; Guo CC; Gu X; Wu Z Shanghai Kou Qiang Yi Xue; 2014 Feb; 23(1):7-14. PubMed ID: 24608605 [TBL] [Abstract][Full Text] [Related]
17. Preparation of PLGA scaffolds with graded pores by using a gelatin-microsphere template as porogen. Tang G; Zhang H; Zhao Y; Zhang Y; Li X; Yuan X J Biomater Sci Polym Ed; 2012; 23(17):2241-57. PubMed ID: 22137329 [TBL] [Abstract][Full Text] [Related]
18. Poly(l-Lactic Acid)/Gelatin Fibrous Scaffold Loaded with Simvastatin/Beta-Cyclodextrin-Modified Hydroxyapatite Inclusion Complex for Bone Tissue Regeneration. Lee JB; Kim JE; Balikov DA; Bae MS; Heo DN; Lee D; Rim HJ; Lee DW; Sung HJ; Kwon IK Macromol Biosci; 2016 Jul; 16(7):1027-38. PubMed ID: 26996294 [TBL] [Abstract][Full Text] [Related]
19. PHBV microspheres--PLGA matrix composite scaffold for bone tissue engineering. Huang W; Shi X; Ren L; Du C; Wang Y Biomaterials; 2010 May; 31(15):4278-85. PubMed ID: 20199806 [TBL] [Abstract][Full Text] [Related]
20. Improvement of cell response of the poly(lactic-co-glycolic acid)/calcium phosphate cement composite scaffold with unidirectional pore structure by the surface immobilization of collagen via plasma treatment. He F; Li J; Ye J Colloids Surf B Biointerfaces; 2013 Mar; 103():209-16. PubMed ID: 23201739 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]