These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25809572)

  • 1. Nitric oxide-eluting scaffolds and their interaction with smooth muscle cells in vitro.
    Parent M; Boudier A; Fries I; Gostyńska A; Rychter M; Lulek J; Leroy P; Gaucher C
    J Biomed Mater Res A; 2015 Oct; 103(10):3303-11. PubMed ID: 25809572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocompatibility and degradation characteristics of PLGA-based electrospun nanofibrous scaffolds with nanoapatite incorporation.
    Ji W; Yang F; Seyednejad H; Chen Z; Hennink WE; Anderson JM; van den Beucken JJ; Jansen JA
    Biomaterials; 2012 Oct; 33(28):6604-14. PubMed ID: 22770568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering.
    Doğan A; Demirci S; Bayir Y; Halici Z; Karakus E; Aydin A; Cadirci E; Albayrak A; Demirci E; Karaman A; Ayan AK; Gundogdu C; Sahin F
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():246-53. PubMed ID: 25280703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of poly(lactide-co-glycolide) scaffold-impregnated small intestinal submucosa with pores that stimulate extracellular matrix production in disc regeneration.
    Kim SH; Song JE; Lee D; Khang G
    J Tissue Eng Regen Med; 2014 Apr; 8(4):279-90. PubMed ID: 22689349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyesterurethane and acellular matrix based hybrid biomaterial for bladder engineering.
    Horst M; Milleret V; Noetzli S; Gobet R; Sulser T; Eberli D
    J Biomed Mater Res B Appl Biomater; 2017 Apr; 105(3):658-667. PubMed ID: 26669507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinctive degradation behaviors of electrospun polyglycolide, poly(DL-lactide-co-glycolide), and poly(L-lactide-co-epsilon-caprolactone) nanofibers cultured with/without porcine smooth muscle cells.
    Dong Y; Yong T; Liao S; Chan CK; Stevens MM; Ramakrishna S
    Tissue Eng Part A; 2010 Jan; 16(1):283-98. PubMed ID: 19839726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated angiogenic host tissue response to poly(L-lactide-co-glycolide) scaffolds by vitalization with osteoblast-like cells.
    Tavassol F; Schumann P; Lindhorst D; Sinikovic B; Voss A; von See C; Kampmann A; Bormann KH; Carvalho C; Mülhaupt R; Harder Y; Laschke MW; Menger MD; Gellrich NC; Rücker M
    Tissue Eng Part A; 2010 Jul; 16(7):2265-79. PubMed ID: 20184434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications.
    Sarkar S; Lee GY; Wong JY; Desai TA
    Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-Adjusting, Polymeric Multilayered Roll that can Keep the Shapes of the Blood Vessel Scaffolds during Biodegradation.
    Cheng S; Jin Y; Wang N; Cao F; Zhang W; Bai W; Zheng W; Jiang X
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28514016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell affinity for bFGF immobilized heparin-containing poly(lactide-co-glycolide) scaffolds.
    Shen H; Hu X; Yang F; Bei J; Wang S
    Biomaterials; 2011 May; 32(13):3404-12. PubMed ID: 21296407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rationalization of specific structure formation in electrospinning process: Study on nano-fibrous PCL- and PLGA-based scaffolds.
    Saeed M; Mirzadeh H; Zandi M; Irani S; Barzin J
    J Biomed Mater Res A; 2015 Dec; 103(12):3927-39. PubMed ID: 26053428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation, characterization and in vivo pharmacodynamic evaluation of thymopentin loaded poly(lactide acid)/poly(lactide-co-glycolide acid) implants.
    Wei G; Jin L; Xu L; Liu Y; Lu W
    Int J Pharm; 2010 Oct; 398(1-2):123-9. PubMed ID: 20674730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties evolution of a PLGA-PLCL composite scaffold for ligament tissue engineering under static and cyclic traction-torsion in vitro culture conditions.
    Kahn CJ; Ziani K; Zhang YM; Liu J; Tran N; Babin J; de Isla N; Six JL; Wang X
    J Biomater Sci Polym Ed; 2013; 24(8):899-911. PubMed ID: 23647247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polycaprolactone-based in situ implant containing curcumin-PLGA nanoparticles prepared using the multivariate technique.
    Kasinathan N; Amirthalingam M; Reddy ND; Vanthi MB; Volety SM; Rao JV
    Artif Cells Nanomed Biotechnol; 2016 Sep; 44(6):1520-8. PubMed ID: 26121330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D PLGA scaffolds improve differentiation and function of bone marrow mesenchymal stem cell-derived hepatocytes.
    Li J; Tao R; Wu W; Cao H; Xin J; Li J; Guo J; Jiang L; Gao C; Demetriou AA; Farkas DL; Li L
    Stem Cells Dev; 2010 Sep; 19(9):1427-36. PubMed ID: 20055663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the cytocompatibility hemocompatibility in vivo bone tissue regenerating capability of different PCL blends.
    Padalhin AR; Thuy Ba Linh N; Ki Min Y; Lee BT
    J Biomater Sci Polym Ed; 2014; 25(5):487-503. PubMed ID: 24450757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of tripolyphosphate nanoparticles into fibrous poly(lactide-co-glycolide) scaffolds for tissue engineering.
    Xie S; Zhu Q; Wang B; Gu H; Liu W; Cui L; Cen L; Cao Y
    Biomaterials; 2010 Jul; 31(19):5100-9. PubMed ID: 20347132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds.
    Huang YX; Ren J; Chen C; Ren TB; Zhou XY
    J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation of PLGA nanoparticles into porous chitosan-gelatin scaffolds: influence on the physical properties and cell behavior.
    Nandagiri VK; Gentile P; Chiono V; Tonda-Turo C; Matsiko A; Ramtoola Z; Montevecchi FM; Ciardelli G
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1318-27. PubMed ID: 21783141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.