These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 2580968)

  • 21. Faster force transient kinetics at submaximal Ca2+ activation of skinned psoas fibers from rabbit.
    Martyn DA; Chase PB
    Biophys J; 1995 Jan; 68(1):235-42. PubMed ID: 7711246
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-resolved equatorial X-ray diffraction studies of skinned muscle fibres during stretch and release.
    Hoskins BK; Ashley CC; Pelc R; Rapp G; Griffiths PJ
    J Mol Biol; 1999 Jul; 290(1):77-97. PubMed ID: 10388559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The myofilament lattice: studies on isolated fibers. 3. The effect of myofilament spacing upon tension.
    April EW; Brandt PW
    J Gen Physiol; 1973 Apr; 61(4):490-508. PubMed ID: 4694743
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tetragonal deformation of the hexagonal myofilament matrix in single skinned skeletal muscle fibres owing to change in sarcomere length.
    Schiereck P; de Beer EL; Grundeman RL; Manussen T; Kylstra N; Bras W
    J Muscle Res Cell Motil; 1992 Oct; 13(5):573-80. PubMed ID: 1460084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crossbridge kinetics in chemically skinned rabbit psoas fibres when the actin-myosin lattice spacing is altered by dextran T-500.
    Kawai M; Schulman MI
    J Muscle Res Cell Motil; 1985 Jun; 6(3):313-32. PubMed ID: 2415551
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cross-bridge movement in rat slow skeletal muscle as a function of calcium concentration.
    Honda H; Koiwa Y; Yagi N; Matsubara I
    Pflugers Arch; 1996 Sep; 432(5):797-802. PubMed ID: 8772129
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Time-resolved X-ray diffraction by skinned skeletal muscle fibers during activation and shortening.
    Hoskins BK; Ashley CC; Rapp G; Griffiths PJ
    Biophys J; 2001 Jan; 80(1):398-414. PubMed ID: 11159411
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of radial crossbridge force by lattice spacing changes in intact single muscle fibers.
    Cecchi G; Bagni MA; Griffiths PJ; Ashley CC; Maeda Y
    Science; 1990 Dec; 250(4986):1409-11. PubMed ID: 2255911
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of pressure on equatorial x-ray fiber diffraction from skeletal muscle fibers.
    Knight PJ; Fortune NS; Geeves MA
    Biophys J; 1993 Aug; 65(2):814-22. PubMed ID: 8218906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Myofilament calcium sensitivity in skinned rat cardiac trabeculae: role of interfilament spacing.
    Konhilas JP; Irving TC; de Tombe PP
    Circ Res; 2002 Jan; 90(1):59-65. PubMed ID: 11786519
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hysteresis and the length dependence of calcium sensitivity in chemically skinned rat cardiac muscle.
    Harrison SM; Lamont C; Miller DJ
    J Physiol; 1988 Jul; 401():115-43. PubMed ID: 3171985
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specific perforation of muscle cell membranes with preserved SR functions by saponin treatment.
    Endo M; Iino M
    J Muscle Res Cell Motil; 1980 Mar; 1(1):89-100. PubMed ID: 6262373
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Active force as a function of filament spacing in crayfish skinned muscle fibers.
    April EW; Maughan DW
    Pflugers Arch; 1986 Oct; 407(4):456-60. PubMed ID: 3774512
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement of sarcomere shortening in skinned fibers from frog muscle by white light diffraction.
    Goldman YE
    Biophys J; 1987 Jul; 52(1):57-68. PubMed ID: 3496924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Troponin I in the murine myocardium: influence on length-dependent activation and interfilament spacing.
    Konhilas JP; Irving TC; Wolska BM; Jweied EE; Martin AF; Solaro RJ; de Tombe PP
    J Physiol; 2003 Mar; 547(Pt 3):951-61. PubMed ID: 12562915
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radial forces within muscle fibers in rigor.
    Maughan DW; Godt RE
    J Gen Physiol; 1981 Jan; 77(1):49-64. PubMed ID: 6970793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Filament lattice of frog striated muscle. Radial forces, lattice stability, and filament compression in the A-band of relaxed and rigor muscle.
    Millman BM; Irving TC
    Biophys J; 1988 Sep; 54(3):437-47. PubMed ID: 3264728
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments.
    Horowits R; Podolsky RJ
    J Cell Biol; 1987 Nov; 105(5):2217-23. PubMed ID: 3680378
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanometer-scale structure differences in the myofilament lattice spacing of two cockroach leg muscles correspond to their different functions.
    Tune TC; Ma W; Irving T; Sponberg S
    J Exp Biol; 2020 May; 223(Pt 9):. PubMed ID: 32205362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A mechanism for sarcomere breathing: volume change and advective flow within the myofilament lattice.
    Cass JA; Williams CD; Irving TC; Lauga E; Malingen S; Daniel TL; Sponberg SN
    Biophys J; 2021 Sep; 120(18):4079-4090. PubMed ID: 34384761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.