These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 2580968)

  • 41. Structure and periodicities of cross-bridges in relaxation, in rigor, and during contractions initiated by photolysis of caged Ca2+.
    Lenart TD; Murray JM; Franzini-Armstrong C; Goldman YE
    Biophys J; 1996 Nov; 71(5):2289-306. PubMed ID: 8913571
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The length-tension curve in muscle depends on lattice spacing.
    Williams CD; Salcedo MK; Irving TC; Regnier M; Daniel TL
    Proc Biol Sci; 2013 Sep; 280(1766):20130697. PubMed ID: 23843386
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermoelastic effect in chemically skinned frog skeletal muscle in rigor.
    Kometani K; Yamada K
    Jpn J Physiol; 1984; 34(3):389-96. PubMed ID: 6541722
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sarcomere length versus interfilament spacing as determinants of cardiac myofilament Ca2+ sensitivity and Ca2+ binding.
    Fuchs F; Wang YP
    J Mol Cell Cardiol; 1996 Jul; 28(7):1375-83. PubMed ID: 8841926
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Elastic behavior of connectin filaments during thick filament movement in activated skeletal muscle.
    Horowits R; Maruyama K; Podolsky RJ
    J Cell Biol; 1989 Nov; 109(5):2169-76. PubMed ID: 2808523
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of sarcomere length and filament lattice spacing on force development in skinned cardiac and skeletal muscle preparations from the rabbit.
    de Beer EL; Grundeman RL; Wilhelm AJ; van den Berg C; Caljouw CJ; Klepper D; Schiereck P
    Basic Res Cardiol; 1988; 83(4):410-23. PubMed ID: 3190659
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Titin-based modulation of active tension and interfilament lattice spacing in skinned rat cardiac muscle.
    Fukuda N; Wu Y; Farman G; Irving TC; Granzier H
    Pflugers Arch; 2005 Feb; 449(5):449-57. PubMed ID: 15688246
    [TBL] [Abstract][Full Text] [Related]  

  • 48. X-ray diffraction evidence for cross-bridge formation in relaxed muscle fibers at various ionic strengths.
    Brenner B; Yu LC; Podolsky RJ
    Biophys J; 1984 Sep; 46(3):299-306. PubMed ID: 6487731
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Donnan potentials from striated muscle liquid crystals. Lattice spacing dependence.
    Aldoroty RA; Garty NB; April EW
    Biophys J; 1987 Mar; 51(3):371-81. PubMed ID: 3567311
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Changes in thick filament structure during compression of the filament lattice in relaxed frog sartorius muscle.
    Irving TC; Millman BM
    J Muscle Res Cell Motil; 1989 Oct; 10(5):385-94. PubMed ID: 2480365
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Z band dynamics as a function of sarcomere length and the contractile state of muscle.
    Goldstein MA; Michael LH; Schroeter JP; Sass RL
    FASEB J; 1987 Aug; 1(2):133-42. PubMed ID: 3609610
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lattice spacing changes accompanying isometric tension development in intact single muscle fibers.
    Bagni MA; Cecchi G; Griffiths PJ; MaƩda Y; Rapp G; Ashley CC
    Biophys J; 1994 Nov; 67(5):1965-75. PubMed ID: 7858133
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Radial stiffness of frog skinned muscle fibers in relaxed and rigor conditions.
    Umazume Y; Kasuga N
    Biophys J; 1984 Apr; 45(4):783-8. PubMed ID: 6609727
    [TBL] [Abstract][Full Text] [Related]  

  • 54. X-ray diffraction observations of chemically skinned frog skeletal muscle processed by an improved method.
    Magid A; Reedy MK
    Biophys J; 1980 Apr; 30(1):27-40. PubMed ID: 6973364
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tension-pCa relations of saponin-skinned rabbit and human heart muscle.
    Pagani ED; Shemin R; Julian FJ
    J Mol Cell Cardiol; 1986 Jan; 18(1):55-66. PubMed ID: 3950971
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring.
    Wang K; McCarter R; Wright J; Beverly J; Ramirez-Mitchell R
    Biophys J; 1993 Apr; 64(4):1161-77. PubMed ID: 8494977
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural states in the Z band of skeletal muscle correlate with states of active and passive tension.
    Goldstein MA; Michael LH; Schroeter JP; Sass RL
    J Gen Physiol; 1988 Jul; 92(1):113-9. PubMed ID: 3171533
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The influence of free calcium on the maximum speed of shortening in skinned frog muscle fibres.
    Julian FJ; Rome LC; Stephenson DG; Striz S
    J Physiol; 1986 Nov; 380():257-73. PubMed ID: 3497264
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Relation between the intensity of low-angle equatorial reflections of x-ray diffraction patterns of frog skeletal muscle and sarcomere length].
    Savel'ev VB
    Biofizika; 1985; 30(5):873-7. PubMed ID: 3876850
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Direct proof of the existence of Ca2+-induced structural changes in miosin-containing thick filaments of vertebrate skeletal muscles].
    Lednev VV; Srebnitskaia LK; Kornev AN; Malinchik SB
    Biofizika; 1982; 27(3):493-7. PubMed ID: 6980017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.