These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 25809902)

  • 1. Structure, Activity and Stereoselectivity of NADPH-Dependent Oxidoreductases Catalysing the S-Selective Reduction of the Imine Substrate 2-Methylpyrroline.
    Man H; Wells E; Hussain S; Leipold F; Hart S; Turkenburg JP; Turner NJ; Grogan G
    Chembiochem; 2015 May; 16(7):1052-9. PubMed ID: 25809902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme toolbox: novel enantiocomplementary imine reductases.
    Scheller PN; Fademrecht S; Hofelzer S; Pleiss J; Leipold F; Turner NJ; Nestl BM; Hauer B
    Chembiochem; 2014 Oct; 15(15):2201-4. PubMed ID: 25163890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biochemical characterization of three imine-reducing enzymes from Streptosporangium roseum DSM43021, Streptomyces turgidiscabies and Paenibacillus elgii.
    Scheller PN; Nestl BM
    Appl Microbiol Biotechnol; 2016 Dec; 100(24):10509-10520. PubMed ID: 27464826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New imine-reducing enzymes from β-hydroxyacid dehydrogenases by single amino acid substitutions.
    Lenz M; Fademrecht S; Sharma M; Pleiss J; Grogan G; Nestl BM
    Protein Eng Des Sel; 2018 Apr; 31(4):109-120. PubMed ID: 29733377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding the Imine Reductase Toolbox by Exploring the Bacterial Protein-Sequence Space.
    Wetzl D; Berrera M; Sandon N; Fishlock D; Ebeling M; Müller M; Hanlon S; Wirz B; Iding H
    Chembiochem; 2015 Aug; 16(12):1749-56. PubMed ID: 26044455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and activity of NADPH-dependent reductase Q1EQE0 from Streptomyces kanamyceticus, which catalyses the R-selective reduction of an imine substrate.
    Rodríguez-Mata M; Frank A; Wells E; Leipold F; Turner NJ; Hart S; Turkenburg JP; Grogan G
    Chembiochem; 2013 Jul; 14(11):1372-9. PubMed ID: 23813853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Characterization of an
    Meyer T; Zumbrägel N; Geerds C; Gröger H; Niemann HH
    Biomolecules; 2020 Jul; 10(8):. PubMed ID: 32751900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A NADPH-dependent (S)-imine reductase (SIR) from Streptomyces sp. GF3546 for asymmetric synthesis of optically active amines: purification, characterization, gene cloning, and expression.
    Mitsukura K; Kuramoto T; Yoshida T; Kimoto N; Yamamoto H; Nagasawa T
    Appl Microbiol Biotechnol; 2013 Sep; 97(18):8079-86. PubMed ID: 23263364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of imine reductase-specific sequence motifs.
    Fademrecht S; Scheller PN; Nestl BM; Hauer B; Pleiss J
    Proteins; 2016 May; 84(5):600-10. PubMed ID: 26857686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. InspIRED by Nature: NADPH-Dependent Imine Reductases (IREDs) as Catalysts for the Preparation of Chiral Amines.
    Grogan G; Turner NJ
    Chemistry; 2016 Feb; 22(6):1900-1907. PubMed ID: 26667842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric synthesis of chiral cyclic amine from cyclic imine by bacterial whole-cell catalyst of enantioselective imine reductase.
    Mitsukura K; Suzuki M; Tada K; Yoshida T; Nagasawa T
    Org Biomol Chem; 2010 Oct; 8(20):4533-5. PubMed ID: 20820664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imine reductases (IREDs).
    Mangas-Sanchez J; France SP; Montgomery SL; Aleku GA; Man H; Sharma M; Ramsden JI; Grogan G; Turner NJ
    Curr Opin Chem Biol; 2017 Apr; 37():19-25. PubMed ID: 28038349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric Ketone Reduction by Imine Reductases.
    Lenz M; Meisner J; Quertinmont L; Lutz S; Kästner J; Nestl BM
    Chembiochem; 2017 Feb; 18(3):253-256. PubMed ID: 27911981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverting the Stereoselectivity of an NADH-Dependent Imine-Reductase Variant.
    Stockinger P; Borlinghaus N; Sharma M; Aberle B; Grogan G; Pleiss J; Nestl BM
    ChemCatChem; 2021 Dec; 13(24):5210-5215. PubMed ID: 35873105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A NADH-accepting imine reductase variant: Immobilization and cofactor regeneration by oxidative deamination.
    Gand M; Thöle C; Müller H; Brundiek H; Bashiri G; Höhne M
    J Biotechnol; 2016 Jul; 230():11-8. PubMed ID: 27164259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extended Catalytic Scope of a Well-Known Enzyme: Asymmetric Reduction of Iminium Substrates by Glucose Dehydrogenase.
    Roth S; Präg A; Wechsler C; Marolt M; Ferlaino S; Lüdeke S; Sandon N; Wetzl D; Iding H; Wirz B; Müller M
    Chembiochem; 2017 Sep; 18(17):1703-1706. PubMed ID: 28722796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of a novel (R)-imine reductase from Streptomyces sp. GF3587.
    Mitsukura K; Suzuki M; Shinoda S; Kuramoto T; Yoshida T; Nagasawa T
    Biosci Biotechnol Biochem; 2011; 75(9):1778-82. PubMed ID: 21897027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting the Catalytic Diversity of Short-Chain Dehydrogenases/Reductases: Versatile Enzymes from Plants with Extended Imine Substrate Scope.
    Roth S; Kilgore MB; Kutchan TM; Müller M
    Chembiochem; 2018 Sep; 19(17):1849-1852. PubMed ID: 29931726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enantioselective imine reduction catalyzed by imine reductases and artificial metalloenzymes.
    Gamenara D; Domínguez de María P
    Org Biomol Chem; 2014 May; 12(19):2989-92. PubMed ID: 24695640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An imine reductase that captures reactive intermediates in the biosynthesis of the indolocarbazole reductasporine.
    Daniel-Ivad P; Ryan KS
    J Biol Chem; 2024 Feb; 300(2):105642. PubMed ID: 38199566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.