BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 25810257)

  • 41. Protein kinase D2 is an essential regulator of murine myoblast differentiation.
    Kleger A; Loebnitz C; Pusapati GV; Armacki M; Müller M; Tümpel S; Illing A; Hartmann D; Brunner C; Liebau S; Rudolph KL; Adler G; Seufferlein T
    PLoS One; 2011 Jan; 6(1):e14599. PubMed ID: 21298052
    [TBL] [Abstract][Full Text] [Related]  

  • 42. GRAF1 promotes ferlin-dependent myoblast fusion.
    Lenhart KC; Becherer AL; Li J; Xiao X; McNally EM; Mack CP; Taylor JM
    Dev Biol; 2014 Sep; 393(2):298-311. PubMed ID: 25019370
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Involvement of Transient Receptor Potential Cation Channel Vanilloid 1 (TRPV1) in Myoblast Fusion.
    Kurosaka M; Ogura Y; Funabashi T; Akema T
    J Cell Physiol; 2016 Oct; 231(10):2275-85. PubMed ID: 26892397
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An siRNA-based screen in C2C12 myoblasts identifies novel genes involved in myogenic differentiation.
    Alwan R; Bruel AL; Da Silva A; Blanquet V; Bouhouche K
    Exp Cell Res; 2017 Oct; 359(1):145-153. PubMed ID: 28782556
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel long non-coding RNA Myolinc regulates myogenesis through TDP-43 and Filip1.
    Militello G; Hosen MR; Ponomareva Y; Gellert P; Weirick T; John D; Hindi SM; Mamchaoui K; Mouly V; Döring C; Zhang L; Nakamura M; Kumar A; Fukada SI; Dimmeler S; Uchida S
    J Mol Cell Biol; 2018 Apr; 10(2):102-117. PubMed ID: 29618024
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Myosin heavy chain-like localizes at cell contact sites during Drosophila myoblast fusion and interacts in vitro with Rolling pebbles 7.
    Bonn BR; Rudolf A; Hornbruch-Freitag C; Daum G; Kuckwa J; Kastl L; Buttgereit D; Renkawitz-Pohl R
    Exp Cell Res; 2013 Feb; 319(4):402-16. PubMed ID: 23246571
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel role for non-muscle gamma-actin in skeletal muscle sarcomere assembly.
    Lloyd CM; Berendse M; Lloyd DG; Schevzov G; Grounds MD
    Exp Cell Res; 2004 Jul; 297(1):82-96. PubMed ID: 15194427
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatial and functional restriction of regulatory molecules during mammalian myoblast fusion.
    Pavlath GK
    Exp Cell Res; 2010 Nov; 316(18):3067-72. PubMed ID: 20553712
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Matrix metalloproteinase 13 is a new contributor to skeletal muscle regeneration and critical for myoblast migration.
    Lei H; Leong D; Smith LR; Barton ER
    Am J Physiol Cell Physiol; 2013 Sep; 305(5):C529-38. PubMed ID: 23761625
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Formation of Aberrant Myotubes by Myoblasts Lacking Myosin VI Is Associated with Alterations in the Cytoskeleton Organization, Myoblast Adhesion and Fusion.
    Lehka L; Topolewska M; Wojton D; Karatsai O; Alvarez-Suarez P; Pomorski P; Rędowicz MJ
    Cells; 2020 Jul; 9(7):. PubMed ID: 32664530
    [TBL] [Abstract][Full Text] [Related]  

  • 51. MicroRNA-17-92 regulates myoblast proliferation and differentiation by targeting the ENH1/Id1 signaling axis.
    Qiu H; Liu N; Luo L; Zhong J; Tang Z; Kang K; Qu J; Peng W; Liu L; Li L; Gou D
    Cell Death Differ; 2016 Oct; 23(10):1658-69. PubMed ID: 27315298
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins.
    Langlois S; Cowan KN
    Adv Exp Med Biol; 2017; 925():57-73. PubMed ID: 27518505
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of kinetic constants of creatine kinase isoforms.
    Matsushima K; Uda K; Ishida K; Kokufuta C; Iwasaki N; Suzuki T
    Int J Biol Macromol; 2006 Mar; 38(2):83-8. PubMed ID: 16451808
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration.
    Teng S; Stegner D; Chen Q; Hongu T; Hasegawa H; Chen L; Kanaho Y; Nieswandt B; Frohman MA; Huang P
    Mol Biol Cell; 2015 Feb; 26(3):506-17. PubMed ID: 25428992
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size.
    Trendelenburg AU; Meyer A; Rohner D; Boyle J; Hatakeyama S; Glass DJ
    Am J Physiol Cell Physiol; 2009 Jun; 296(6):C1258-70. PubMed ID: 19357233
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Involvement of unconventional myosin VI in myoblast function and myotube formation.
    Karolczak J; Pavlyk I; Majewski Ł; Sobczak M; Niewiadomski P; Rzhepetskyy Y; Sikorska A; Nowak N; Pomorski P; Prószyński T; Ehler E; Rędowicz MJ
    Histochem Cell Biol; 2015 Jul; 144(1):21-38. PubMed ID: 25896210
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Adhesion and Fusion of Muscle Cells Are Promoted by Filopodia.
    Segal D; Dhanyasi N; Schejter ED; Shilo BZ
    Dev Cell; 2016 Aug; 38(3):291-304. PubMed ID: 27505416
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Autonomous xenogenic cell fusion of murine and chick skeletal muscle myoblasts.
    Takaya T; Nihashi Y; Kojima S; Ono T; Kagami H
    Anim Sci J; 2017 Nov; 88(11):1880-1885. PubMed ID: 28782148
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Leucyl-tRNA synthetase is required for the myogenic differentiation of C2C12 myoblasts, but not for hypertrophy or metabolic alteration of myotubes.
    Sato Y; Sato Y; Suzuki R; Obeng K; Yoshizawa F
    Exp Cell Res; 2018 Mar; 364(2):184-190. PubMed ID: 29425714
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dephosphorylation of HDAC4 by PP2A-Bδ unravels a new role for the HDAC4/MEF2 axis in myoblast fusion.
    Veloso A; Martin M; Bruyr J; O'Grady T; Deroanne C; Mottet D; Twizere JC; Cherrier T; Dequiedt F
    Cell Death Dis; 2019 Jul; 10(7):512. PubMed ID: 31273193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.