BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

874 related articles for article (PubMed ID: 25810494)

  • 1. Failed Tubule Recovery, AKI-CKD Transition, and Kidney Disease Progression.
    Venkatachalam MA; Weinberg JM; Kriz W; Bidani AK
    J Am Soc Nephrol; 2015 Aug; 26(8):1765-76. PubMed ID: 25810494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Renal Hypoxia in the Progression From Acute Kidney Injury to Chronic Kidney Disease.
    Ullah MM; Basile DP
    Semin Nephrol; 2019 Nov; 39(6):567-580. PubMed ID: 31836039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute Kidney Injury to Chronic Kidney Disease Transition.
    Fiorentino M; Grandaliano G; Gesualdo L; Castellano G
    Contrib Nephrol; 2018; 193():45-54. PubMed ID: 29393158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia as a key player in the AKI-to-CKD transition.
    Tanaka S; Tanaka T; Nangaku M
    Am J Physiol Renal Physiol; 2014 Dec; 307(11):F1187-95. PubMed ID: 25350978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute kidney injury and maladaptive tubular repair leading to renal fibrosis.
    Yu SM; Bonventre JV
    Curr Opin Nephrol Hypertens; 2020 May; 29(3):310-318. PubMed ID: 32205583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute kidney injury to chronic kidney disease transition: insufficient cellular stress response.
    Strausser SA; Nakano D; Souma T
    Curr Opin Nephrol Hypertens; 2018 Jul; 27(4):314-322. PubMed ID: 29702491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence microangiography for quantitative assessment of peritubular capillary changes after AKI in mice.
    Kramann R; Tanaka M; Humphreys BD
    J Am Soc Nephrol; 2014 Sep; 25(9):1924-31. PubMed ID: 24652794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capillary rarefaction is more closely associated with CKD progression after cisplatin, rhabdomyolysis, and ischemia-reperfusion-induced AKI than renal fibrosis.
    Menshikh A; Scarfe L; Delgado R; Finney C; Zhu Y; Yang H; de Caestecker MP
    Am J Physiol Renal Physiol; 2019 Nov; 317(5):F1383-F1397. PubMed ID: 31509009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microvascular rarefaction and hypertension in the impaired recovery and progression of kidney disease following AKI in preexisting CKD states.
    Polichnowski AJ
    Am J Physiol Renal Physiol; 2018 Dec; 315(6):F1513-F1518. PubMed ID: 30256130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mitochondrial Pathology and Glycolytic Shift during Proximal Tubule Atrophy after Ischemic AKI.
    Lan R; Geng H; Singha PK; Saikumar P; Bottinger EP; Weinberg JM; Venkatachalam MA
    J Am Soc Nephrol; 2016 Nov; 27(11):3356-3367. PubMed ID: 27000065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathophysiology of unilateral ischemia-reperfusion injury: importance of renal counterbalance and implications for the AKI-CKD transition.
    Polichnowski AJ; Griffin KA; Licea-Vargas H; Lan R; Picken MM; Long J; Williamson GA; Rosenberger C; Mathia S; Venkatachalam MA; Bidani AK
    Am J Physiol Renal Physiol; 2020 May; 318(5):F1086-F1099. PubMed ID: 32174143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Severity and Frequency of Proximal Tubule Injury Determines Renal Prognosis.
    Takaori K; Nakamura J; Yamamoto S; Nakata H; Sato Y; Takase M; Nameta M; Yamamoto T; Economides AN; Kohno K; Haga H; Sharma K; Yanagita M
    J Am Soc Nephrol; 2016 Aug; 27(8):2393-406. PubMed ID: 26701981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative View of the Mechanisms that Induce Acute Kidney Injury and its Transition to Chronic Kidney Disease.
    García-Ortuño LE; Bobadilla NA
    Rev Invest Clin; 2018; 70(6):261-268. PubMed ID: 30532110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wnt/β-Catenin in Acute Kidney Injury and Progression to Chronic Kidney Disease.
    Huffstater T; Merryman WD; Gewin LS
    Semin Nephrol; 2020 Mar; 40(2):126-137. PubMed ID: 32303276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maladaptive proximal tubule repair: cell cycle arrest.
    Bonventre JV
    Nephron Clin Pract; 2014; 127(1-4):61-4. PubMed ID: 25343823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sonic hedgehog is a novel tubule-derived growth factor for interstitial fibroblasts after kidney injury.
    Zhou D; Li Y; Zhou L; Tan RJ; Xiao L; Liang M; Hou FF; Liu Y
    J Am Soc Nephrol; 2014 Oct; 25(10):2187-200. PubMed ID: 24744439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal ischemia-reperfusion injury causes hypertension and renal perfusion impairment in the CD1 mice which promotes progressive renal fibrosis.
    Greite R; Thorenz A; Chen R; Jang MS; Rong S; Brownstein MJ; Tewes S; Wang L; Baniassad B; Kirsch T; Bräsen JH; Lichtinghagen R; Meier M; Haller H; Hueper K; Gueler F
    Am J Physiol Renal Physiol; 2018 May; 314(5):F881-F892. PubMed ID: 29357437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial dysfunction and the AKI-to-CKD transition.
    Jiang M; Bai M; Lei J; Xie Y; Xu S; Jia Z; Zhang A
    Am J Physiol Renal Physiol; 2020 Dec; 319(6):F1105-F1116. PubMed ID: 33073587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute kidney injury: a springboard for progression in chronic kidney disease.
    Venkatachalam MA; Griffin KA; Lan R; Geng H; Saikumar P; Bidani AK
    Am J Physiol Renal Physiol; 2010 May; 298(5):F1078-94. PubMed ID: 20200097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early elimination of uremic toxin ameliorates AKI-to-CKD transition.
    Chen JH; Chao CT; Huang JW; Hung KY; Liu SH; Tarng DC; Chiang CK
    Clin Sci (Lond); 2021 Dec; 135(23):2643-2658. PubMed ID: 34796904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.