These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 25810767)
21. ChemDataExtractor: A Toolkit for Automated Extraction of Chemical Information from the Scientific Literature. Swain MC; Cole JM J Chem Inf Model; 2016 Oct; 56(10):1894-1904. PubMed ID: 27669338 [TBL] [Abstract][Full Text] [Related]
22. NERChem: adapting NERBio to chemical patents via full-token features and named entity feature with chemical sub-class composition. Tsai RT; Hsiao YC; Lai PT Database (Oxford); 2016 Oct; 2016():. PubMed ID: 31414701 [TBL] [Abstract][Full Text] [Related]
23. LSTMVoter: chemical named entity recognition using a conglomerate of sequence labeling tools. Hemati W; Mehler A J Cheminform; 2019 Jan; 11(1):3. PubMed ID: 30631966 [TBL] [Abstract][Full Text] [Related]
24. Linking entities through an ontology using word embeddings and syntactic re-ranking. Karadeniz İ; Özgür A BMC Bioinformatics; 2019 Mar; 20(1):156. PubMed ID: 30917789 [TBL] [Abstract][Full Text] [Related]
25. ChemSpot: a hybrid system for chemical named entity recognition. Rocktäschel T; Weidlich M; Leser U Bioinformatics; 2012 Jun; 28(12):1633-40. PubMed ID: 22500000 [TBL] [Abstract][Full Text] [Related]
26. Full-text chemical identification with improved generalizability and tagging consistency. Kim H; Sung M; Yoon W; Park S; Kang J Database (Oxford); 2022 Sep; 2022():. PubMed ID: 36170114 [TBL] [Abstract][Full Text] [Related]
27. Chemical identification and indexing in PubMed full-text articles using deep learning and heuristics. Almeida T; Antunes R; F Silva J; Almeida JR; Matos S Database (Oxford); 2022 Jul; 2022():. PubMed ID: 35776534 [TBL] [Abstract][Full Text] [Related]
28. Improving chemical entity recognition through h-index based semantic similarity. Lamurias A; Ferreira JD; Couto FM J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S13. PubMed ID: 25810770 [TBL] [Abstract][Full Text] [Related]
29. Biomedical named entity recognition using deep neural networks with contextual information. Cho H; Lee H BMC Bioinformatics; 2019 Dec; 20(1):735. PubMed ID: 31881938 [TBL] [Abstract][Full Text] [Related]
30. Developing a hybrid dictionary-based bio-entity recognition technique. Song M; Yu H; Han WS BMC Med Inform Decis Mak; 2015; 15 Suppl 1(Suppl 1):S9. PubMed ID: 26043907 [TBL] [Abstract][Full Text] [Related]
31. Chemical named entity recognition in the texts of scientific publications using the naïve Bayes classifier approach. Tarasova OA; Rudik AV; Biziukova NY; Filimonov DA; Poroikov VV J Cheminform; 2022 Aug; 14(1):55. PubMed ID: 35964150 [TBL] [Abstract][Full Text] [Related]
32. A neural network approach to chemical and gene/protein entity recognition in patents. Luo L; Yang Z; Yang P; Zhang Y; Wang L; Wang J; Lin H J Cheminform; 2018 Dec; 10(1):65. PubMed ID: 30564940 [TBL] [Abstract][Full Text] [Related]
33. Stacked ensemble combined with fuzzy matching for biomedical named entity recognition of diseases. Bhasuran B; Murugesan G; Abdulkadhar S; Natarajan J J Biomed Inform; 2016 Dec; 64():1-9. PubMed ID: 27634494 [TBL] [Abstract][Full Text] [Related]
34. Clinical Named Entity Recognition From Chinese Electronic Health Records via Machine Learning Methods. Zhang Y; Wang X; Hou Z; Li J JMIR Med Inform; 2018 Dec; 6(4):e50. PubMed ID: 30559093 [TBL] [Abstract][Full Text] [Related]
35. Active learning for ontological event extraction incorporating named entity recognition and unknown word handling. Han X; Kim JJ; Kwoh CK J Biomed Semantics; 2016; 7():22. PubMed ID: 27127603 [TBL] [Abstract][Full Text] [Related]
36. Optimising chemical named entity recognition with pre-processing analytics, knowledge-rich features and heuristics. Batista-Navarro R; Rak R; Ananiadou S J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S6. PubMed ID: 25810777 [TBL] [Abstract][Full Text] [Related]
37. Efficient chemical-disease identification and relationship extraction using Wikipedia to improve recall. Lowe DM; O'Boyle NM; Sayle RA Database (Oxford); 2016; 2016():. PubMed ID: 27060160 [TBL] [Abstract][Full Text] [Related]
38. Assessing the state of the art in biomedical relation extraction: overview of the BioCreative V chemical-disease relation (CDR) task. Wei CH; Peng Y; Leaman R; Davis AP; Mattingly CJ; Li J; Wiegers TC; Lu Z Database (Oxford); 2016; 2016():. PubMed ID: 26994911 [TBL] [Abstract][Full Text] [Related]
39. Chemlistem: chemical named entity recognition using recurrent neural networks. Corbett P; Boyle J J Cheminform; 2018 Dec; 10(1):59. PubMed ID: 30523437 [TBL] [Abstract][Full Text] [Related]
40. Evaluation of text-mining systems for biology: overview of the Second BioCreative community challenge. Krallinger M; Morgan A; Smith L; Leitner F; Tanabe L; Wilbur J; Hirschman L; Valencia A Genome Biol; 2008; 9 Suppl 2(Suppl 2):S1. PubMed ID: 18834487 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]