These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25810767)

  • 41. MER: a shell script and annotation server for minimal named entity recognition and linking.
    Couto FM; Lamurias A
    J Cheminform; 2018 Dec; 10(1):58. PubMed ID: 30519990
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A graph-search framework for associating gene identifiers with documents.
    Cohen WW; Minkov E
    BMC Bioinformatics; 2006 Oct; 7():440. PubMed ID: 17032441
    [TBL] [Abstract][Full Text] [Related]  

  • 43. FamPlex: a resource for entity recognition and relationship resolution of human protein families and complexes in biomedical text mining.
    Bachman JA; Gyori BM; Sorger PK
    BMC Bioinformatics; 2018 Jun; 19(1):248. PubMed ID: 29954318
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Integrating various resources for gene name normalization.
    Hu Y; Li Y; Lin H; Yang Z; Cheng L
    PLoS One; 2012; 7(9):e43558. PubMed ID: 22984434
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition.
    Luo L; Yang Z; Yang P; Zhang Y; Wang L; Lin H; Wang J
    Bioinformatics; 2018 Apr; 34(8):1381-1388. PubMed ID: 29186323
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemical entity extraction using CRF and an ensemble of extractors.
    Khabsa M; Giles CL
    J Cheminform; 2015; 7(Suppl 1 Text mining for chemistry and the CHEMDNER track):S12. PubMed ID: 25810769
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chemical named entities recognition: a review on approaches and applications.
    Eltyeb S; Salim N
    J Cheminform; 2014; 6():17. PubMed ID: 24834132
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Chemical-gene relation extraction using recursive neural network.
    Lim S; Kang J
    Database (Oxford); 2018 Jan; 2018():. PubMed ID: 29961818
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improving the dictionary lookup approach for disease normalization using enhanced dictionary and query expansion.
    Jonnagaddala J; Jue TR; Chang NW; Dai HJ
    Database (Oxford); 2016; 2016():. PubMed ID: 27504009
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining.
    Hettne KM; Williams AJ; van Mulligen EM; Kleinjans J; Tkachenko V; Kors JA
    J Cheminform; 2010 Mar; 2(1):3. PubMed ID: 20331846
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Boosting drug named entity recognition using an aggregate classifier.
    Korkontzelos I; Piliouras D; Dowsey AW; Ananiadou S
    Artif Intell Med; 2015 Oct; 65(2):145-53. PubMed ID: 26116947
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anatomical entity recognition with a hierarchical framework augmented by external resources.
    Xu Y; Hua J; Ni Z; Chen Q; Fan Y; Ananiadou S; Chang EI; Tsujii J
    PLoS One; 2014; 9(10):e108396. PubMed ID: 25343498
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The SPECIES and ORGANISMS Resources for Fast and Accurate Identification of Taxonomic Names in Text.
    Pafilis E; Frankild SP; Fanini L; Faulwetter S; Pavloudi C; Vasileiadou A; Arvanitidis C; Jensen LJ
    PLoS One; 2013; 8(6):e65390. PubMed ID: 23823062
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Automatic identification of relevant chemical compounds from patents.
    Akhondi SA; Rey H; Schwörer M; Maier M; Toomey J; Nau H; Ilchmann G; Sheehan M; Irmer M; Bobach C; Doornenbal M; Gregory M; Kors JA
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 30698776
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Disease named entity recognition by combining conditional random fields and bidirectional recurrent neural networks.
    Wei Q; Chen T; Xu R; He Y; Gui L
    Database (Oxford); 2016; 2016():. PubMed ID: 27777244
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Text mining in livestock animal science: introducing the potential of text mining to animal sciences.
    Sahadevan S; Hofmann-Apitius M; Schellander K; Tesfaye D; Fluck J; Friedrich CM
    J Anim Sci; 2012 Oct; 90(10):3666-76. PubMed ID: 22665627
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Building a protein name dictionary from full text: a machine learning term extraction approach.
    Shi L; Campagne F
    BMC Bioinformatics; 2005 Apr; 6():88. PubMed ID: 15817129
    [TBL] [Abstract][Full Text] [Related]  

  • 58. BioCreative V CDR task corpus: a resource for chemical disease relation extraction.
    Li J; Sun Y; Johnson RJ; Sciaky D; Wei CH; Leaman R; Davis AP; Mattingly CJ; Wiegers TC; Lu Z
    Database (Oxford); 2016; 2016():. PubMed ID: 27161011
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chemical Entity Recognition for MEDLINE Indexing.
    Savery ME; Rogers WJ; Pillai M; Mork JG; Demner-Fushman D
    AMIA Jt Summits Transl Sci Proc; 2020; 2020():561-568. PubMed ID: 32477678
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multi-stage gene normalization for full-text articles with context-based species filtering for dynamic dictionary entry selection.
    Tsai RT; Lai PT
    BMC Bioinformatics; 2011 Oct; 12 Suppl 8(Suppl 8):S7. PubMed ID: 22151087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.